Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Peter C. Sercel from the Center for Hybrid Organic Inorganic Semiconductors for Energy, recently reported the utilization of lattice distortion in lead halide perovskite quantum dots (QDs) to control their exciton fine structure. The study was published in Nature Materials on Sept. 8. It is well known that shape or crystal anisotropy in…
Structural damage in lightweight components – caused by bird strikes on an aircraft wing, for example – is often difficult to detect using conventional non-destructive testing methods. Two new research robots at the Institute of Polymer Technology (IKT) at the University of Stuttgart, working autonomously and synchronously, are intended to optimize the testing technology for multifunctional high-performance materials. With a soft whir, JAMES raises its arm and grabs a tool head. Almost like a dancer, the robot moves freely through…
A group of chemists from Kaunas University of Technology in Lithuania, the authors of numerous breakthrough innovations in the solar energy field, proposed yet another solution to increase the stability and performance of perovskite solar elements. They synthesised a new class of carbazole-based cross-linkable materials, which are resistant to various environmental effects, including strong solvents used in the production of solar cells. When applied as hole transporting layers, the new materials developed at Kaunas University of Technology (KTU) labs, helped…
… into a 100-times stronger, ductile hybrid carbon microlattice material. Developing a lightweight material that is both strong and highly ductile has been regarded as a long-desired goal in the field of structural materials, but these properties are generally mutually exclusive. Researchers at City University of Hong Kong (CityU) recently discovered a low-cost, direct method to turn commonly used 3D printable polymers into lightweight, ultra-tough, biocompatible hybrid carbon microlattices, which can be in any shape or size, and are 100…
Technology reported in UC Riverside-led study has nanoelectronic applications. A research team led by a physicist at the University of California, Riverside, has demonstrated a new magnetized state in a monolayer of tungsten ditelluride, or WTe2, a new quantum material. Called a magnetized or ferromagnetic quantum spin Hall insulator, this material of one-atom thickness has an insulating interior but a conducting edge, which has important implications for controlling electron flow in nanodevices. In a typical conductor, electrical current flows evenly everywhere….
Highly sensitive electronic components are the drivers of our digitalized world. Micro-electro-mechanical systems (MEMS) open up new possibilities for miniaturization in wide-ranging application areas. With its state-of-the-art 200 mm clean room, Fraunhofer IPMS offers the complete value chain for MEMS as well as optical components MOEMS (Micro-Opto-Electro-Mechanical Systems). The range of services extends from consulting on feasibility through initial demonstration at wafer level to pilot fabrication with manufacturing capacities of more than 1100 waferstarts per month. Under the motto “Intelligent…
… in industrial high-power USP processes. Together with Hamamatsu, the Fraunhofer Institute for Laser Technology ILT in Aachen has set up an application lab for advanced laser material processing with ultrashort pulsed (USP) laser radiation. In Aachen, the partners jointly developed an industrial processing SLM-head that can use customized, dynamic beam shaping combined with large laser average output powers for a wide range of applications. The applied, new Spatial Light Modulator from Hamamatsu can be operated up to 150 watts…
An international team led by researchers at the RIKEN Cluster for Pioneering Research (CPR) has engineered a system for creating remote controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered by a rechargeable battery attached to a solar cell. Despite the mechanic devices, ultrathin electronics and flexible materials allow the insects to move freely. These achievements, reported in the scientific journal npj Flexible Electronics on September 5, will help make the use of cyborg insects a…
Transporting alternative fueled vehicles on roll-on/roll-off ferries. Electric vehicles are booming, with more than a million on German roads as of this year. This, in turn, means that an increasing number of alternative fueled vehicles are transported on ferries. However, there are particular conditions associated with traveling at sea, such as the sea state and closed vehicle decks. This, in combination with the particular characteristics of and risks associated with alternative fueled vehicles, means that shipping companies and ship crews…
Research team develops model to explain how cilia beat. Cilia are tiny, hair-like structures on cells throughout our bodies that beat rhythmically to serve a variety of functions when they are working properly, including circulating cerebrospinal fluid in brains and transporting eggs in fallopian tubes. Defective cilia can lead to disorders including situs inversus — a condition where a person’s organs develop on the side opposite of where they usually are. Researchers know about many of cilia’s roles, but not…
Sustainable environmental and process engineering. In collaboration with TU Dresden, Fraunhofer researchers have developed a process for obtaining valuable, high-purity ethyl acetate from whey. This can be used, for example, to produce environmentally friendly adhesives, thereby replacing conventional ethyl acetate extracted from fossil-based raw materials. It also eliminates the need for costly disposal of the molasses produced during whey processing. Every day, large quantities of whey are produced as a by-product by the dairy industry. In Germany alone, this amounts…
Out with the silver, in with the copper: The rising price and low availability of raw materials, especially silver, are leading to higher costs in producing photovoltaic modules. Fraunhofer researchers have developed an electroplating process that involves substituting silver, an expensive precious metal, with copper, which is more readily available. They have also succeeded in replacing the polymers that are usually left over after electroplating processes, and are expensive to dispose of, by instead using easily recyclable aluminum for masking….
An example of hybrid technology in its purest form has been developed and built by the Fraunhofer ILT for the DVS research project “KoaxHybrid.” In Aachen, the institute engineers have developed a new optical system with glass substrates and an arc torch which unites metal shielding gas (MSG) welding and laser material deposition with an annular beam, thus creating a completely new process. Interested parties can find out how the COLLAR Hybrid process can be used to increase the welding…
The research has been published in Science Robotics. One of the first demonstrations is that of a pneumatic hand made using a simple 3D printer. Artificial pneumatic muscles consisting of 3D-printed structures that can extend and contract as required: this is the innovative design of the GRACE actuators devised by researchers from the Istituto Italiano di Tecnologia (IIT, Italian Institute of Technology) in Genoa and the Scuola Superiore Sant’Anna (SSSA, Sant’Anna School of Advanced Studies) in Pisa. The work has…
Superconductors — materials that conduct electricity with zero loss of energy — have been well-understood since the development of what’s called the BCS theory in the mid-1950s. However, the recent development of superconducting diodes using twisted, multi-layer graphene has made understanding how unconventional superconductors function an important new topic of fundamental research. Now, an international research group that includes Brown Assistant Professor of Physics Jia Li has reached a critical milestone: Using graphene, a material with unique properties, they’ve demonstrated…
New laser charging system could offer safe cordless power for mobile devices and sensors. Imagine walking into an airport or grocery store and your smartphone automatically starts charging. This could be a reality one day, thanks to a new wireless laser charging system that overcomes some of the challenges that have hindered previous attempts to develop safe and convenient on-the-go charging systems. “The ability to power devices wirelessly could eliminate the need to carry around power cables for our phones…