Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
Researchers have developed a system that can transform plastic waste and greenhouse gases into sustainable fuels and other valuable products – using just the energy from the Sun. The researchers, from the University of Cambridge, developed the system, which can convert two waste streams into two chemical products at the same time – the first time this has been achieved in a solar-powered reactor. The reactor converts the carbon dioxide (CO2) and plastics into different products that are useful in…
Progresses and prospects… Metal halide perovskites (MHPs) have been emerging as the rising star in the field of optoelectronics during the past decade. The state-of-the-art optoelectronic technologies based on MHPs, such as perovskite solar cells (PSCs), light emitting diodes (LEDs), photodetectors (PDs) and lasers, have been leading the prevailing paradigm owing to the intriguing optoelectronic properties of MHPs. Also, MHPs possesses the merits of facile and low-cost processing and the favorable tunable optical and electronic features, providing a rich and…
With a new design, lithium-sulfur batteries could reach their full potential. Batteries are everywhere in daily life, from cell phones and smart watches to the increasing number of electric vehicles. Most of these devices use well-known batteries“>lithium-ion battery technology. And while lithium-ion batteries have come a long way since they were first introduced, they have some familiar drawbacks as well, such as short lifetimes, overheating and supply chain challenges for certain raw materials. Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are researching…
Two-dimensional material could make novel strain sensors, photodetectors and other nanodevices a reality. The optical, electrical and mechanical properties of some materials change depending on the direction or orientation of the material. Depending on how wood is cut, for example, the orientation of the wood grain can result in a stronger or weaker material with different appearances. This same principal applies to ultrathin, two-dimensional (2D) materials with unique properties such as magnetism. Depending on the direction of a mechanical strain…
Researchers discover that electrons play a surprising role in heat transfer between layers of semiconductors, with implications for next-generation electronic devices. As semiconductor devices become ever smaller, researchers are exploring two-dimensional (2D) materials for potential applications in transistors and optoelectronics. Controlling the flow of electricity and heat through these materials is key to their functionality, but first we need to understand the details of those behaviors at atomic scales. Now, researchers have discovered that electrons play a surprising role in…
… and cross-sector energy network planning. The energy market is undergoing a major shift, with renewable energies booming and the number of connection requests rising sharply due to funding programs for solar plants, heat pumps and electric vehicle charging stations. The new cloud software retoflow offers energy network operators an automated and efficient way to check these requests, model and simulate power grids and pipeline networks across sectors, and engage in long-term planning. This user-friendly program has been developed by…
Programmable materials are true shapeshifters. They can change their characteristics in a controlled and reversible way with the push of a button, independently adapting to fit new conditions. They can be used, for example, to make comfy chairs or mattresses that prevent bedsores. To produce these, the support is formed in such a way that the contact surface is large which, as a result, lowers the pressure on parts of the body. This type of programmable material is being developed…
Additive manufacturing of tools using a laser powder bed fusion process offers a great number of advantages: It is economical, precise and allows for customized solutions. That said, it can be difficult to determine the optimal process parameters, such as the scan speed or power of the laser. For the first time, researchers at Fraunhofer are now simulating the process at the microstructure level in order to identify direct correlations between the workpiece properties and the selected process parameters. To…
Georgia Tech researchers developed a new nanoelectronics platform based on graphene – a single sheet of carbon atoms. A pressing quest in the field of nanoelectronics is the search for a material that could replace silicon. Graphene has seemed promising for decades. But its potential faltered along the way, due to damaging processing methods and the lack of a new electronics paradigm to embrace it. With silicon nearly maxed out in its ability to accommodate faster computing, the next big…
… in stable, efficient & scalable perovskite solar cells. Members of Exciton Science have created perovskite solar cells with 21% efficiency, the best results ever recorded for a device made from a non-halide lead source. A new pathway to creating durable, efficient perovskite photovoltaics at industrial scale has been demonstrated through the first effective use of lead acetate as a precursor in making formamidinium-caesium perovskite solar cells. Members of Exciton Science, based at Monash University, were able to create perovskite…
Titanium oxides found to significantly increase efficiency and photoluminescence. White LEDs may soon be dethroned as the world’s go-to light source by an alternative with a much better sense of direction. As a next-generation optical control technology, a photonic crystal or nanoantenna is a two-dimensional structure in which nano-sized particles are arranged periodically on a substrate. Upon irradiation, the combination of a nanoantennawith a phosphor plate achieves an ideal mix of blue and yellow light. White LEDs have already been improved upon in the form of white…
Scientists from HZB could significantly improve on the efficiency of perovskite/silicon tandem solar cells. “This is a really big leap forward that we didn’t foresee a few months ago. All the teams involved at HZB, especially the PV Competence Center (PVComB) and the HySPRINT Innovation lab teams have worked together successfully and with passion,” says Prof. Steve Albrecht. Interface modifications His team used an advanced perovskite composition with a very smart interface modification. The lead authors, postdocs Dr. Silvia Mariotti,…
Accurate knowledge of the ignition of methane-air mixtures will help to increase the efficiency and reduce the environmental impact of heating and power generation. Researchers of the Faculty of Science at the ELTE Eötvös Loránd University investigate the properties of methane, the most important component of natural gas. Accurate knowledge of the ignition of methane-air mixtures will help to increase the efficiency and reduce the environmental impact of heating and power generation, and could also lead to further developments in…
When a material with magnetic properties, constructed from appropriately selected layers, is illuminated by a pulse from an X-ray laser, it instantly demagnetises. This phenomenon, so far poorly understood, could in the future be used in nanoelectronics, to build, for example, ultrafast magnetic switches. An important step toward this goal is a new simulation tool developed by a Polish-German-Italian team of scientists as part of a joint research project between the European XFEL and IFJ PAN. No information-processing device can operate at a speed…
After two years of development, the European Commission-funded project INNO4COV-19 (FKZ 101016203), which supported the commercialization of new products to combat COVID-19 in Europe, has come to an end. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP developed, among other things, a prototype of a portable thermal camera system with integrated, low-power microdisplays for early and contactless detection of infected persons. This system will be presented at CES 2023 in Las Vegas, USA, January 5-8, 2023,…
Lasers have ignited fusion! Lasers have ignited a mini star on earth, laying the foundation for a clean energy source of the future: A historical breakthrough in inertial confinement fusion research at the National Ignition Facility at Lawrence Livermore National Lab and a defining moment for Photonics! One of the most promising applications of laser technology, the realization of laser-driven fusion, has achieved a historical breakthrough. As announced by Lawrence Livermore National Laboratory (LLNL, California, USA) in its press release…