Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
Based on the vanillin made usable for electricity storage in 2020, an AI-optimised prototype of an environmentally friendly electricity storage system is now being developed in an international project. In 2020, Stefan Spirk from the Institute of Bioproducts and Paper Technology at Graz University of Technology (TU Graz) described the research achievement with which he and his team had succeeded as a “ground-breaking success in the field of sustainable energy storage technologies” to make redox flow batteries more environmentally friendly…
Macquarie University engineers have developed a new technique to make the manufacture of nanosensors far less carbon-intensive, much cheaper, more efficient, and more versatile, substantially improving a key process in this trillion-dollar global industry. The team has found a way to treat each sensor using a single drop of ethanol instead of the conventional process that involves heating materials to high temperatures. Their research, published yesterday in the Journal of Advanced Functional Materials, is titled, ‘Capillary-driven self-assembled microclusters for highly performing…
Device uses nano-sized polyoxometalates. Scientists are looking for ways to use the low-value energy widely distributed in natural environments to generate electricity. A research team has created a power generator that collects the natural atmospheric humidity and produces continuous electrical signals. This is the first humidity generator designed using a nano-sized material called polyoxometalates. It holds the potential of being a new research direction for polyoxometalates in the sustainable utilization of low-value energy. The team’s work is published in the…
Researchers at Tohoku University and Massachusetts Institute of Technology (MIT) have unveiled new information about the anomalous dynamics at play when an electric current is applied to a new class of magnetic materials called non-collinear antiferromagnets. Researchers at Tohoku University and Massachusetts Institute of Technology (MIT) have unveiled a representative effect of the anomalous dynamics at play when an electric current is applied to a new class of magnetic materials called non-collinear antiferromagnets. Their findings were published in the journal Nature…
…that function with minimal external pressure. New stand-alone thin-film version of the solid-state electrolyte called lithium phosphorus oxynitride (LiPON) shows promise in functional battery tests. A team of battery researchers led by the University of California San Diego and University of Chicago has developed a new methodology to produce the potentially game-changing thin-film solid-state electrolyte called lithium phosphorus oxynitride (LiPON). The team went on to implement their free-standing version of LiPON film in functional battery tests and found that it…
– but shortens their lifespans. Tinkering with the makeup of inexpensive LED lights boosted their brightness and efficiency, but the new lights only lasted a few minutes. Chances are, the screen you’re reading from glows thanks to light-emitting diodes – commonly known as LEDs. This widespread technology provides energy-efficient indoor lighting and increasingly illuminates our computer monitors, TVs, and smartphone screens. Unfortunately, it also requires a relatively laborious and expensive manufacturing process. Hoping to address this shortcoming, Stanford researchers tested…
Fundamental discovery and new technique could lead to better, safer rechargeable batteries. Rechargeable lithium-ion batteries power smartphones, electric vehicles and storage for solar and wind energy, among other technologies. They descend from another technology, the lithium-metal battery, that hasn’t been developed or adopted as broadly. There’s a reason for that: While lithium-metal batteries have the potential to hold about double the energy that lithium-ion batteries can, they also present a far greater risk of catching fire or even exploding. Now,…
Hydrogen from electrolysis with renewable energies is considered a key element of the energy transition. By means of catalysts, water is split into its components hydrogen and oxygen. The electrochemical reaction requires precious metals such as platinum, iridium or ruthenium as catalysts. How the recycling of these metals can be improved has been examined for three years by a European research project with the participation of TU Bergakademie Freiberg. “Since the expensive precious metals in electrolysis cells cannot yet be…
Chemical protective suits (CSA) protect against contact with chemical, biological or radioactive substances. The suits easily weigh in at 25 kilograms. New materials and an improved design make them more comfortable to wear. Integrated sensors monitor vital functions. In the event of hazards from chemical, biological or radioactive substances, chemical protective suits (CSA) protect people from physical contact. CSAs consist of breathing apparatus, head protection, carrying frames and the suit itself. This adds up to a weight of around 25…
With a new, user-friendly interface, researchers can quickly design many cellular metamaterial structures that have unique mechanical properties. Engineers are constantly searching for materials with novel, desirable property combinations. For example, an ultra-strong, lightweight material could be used to make airplanes and cars more fuel-efficient, or a material that is porous and biomechanically friendly could be useful for bone implants. Cellular metamaterials — artificial structures composed of units, or cells, that repeat in various patterns — can help achieve these…
…make self-driving cars safer – and cheaper. The combined radar expertise of Fraunhofer IZM is making the sensors needed for self-driving cars not just cheaper, but more reliable and accurate at the same time. The researchers joined a group of industry partners to design a radar system with an angular resolution of below one degree at 180° coverage. One advantage of the system: Autonomous cars need fewer than half of the radars they need nowadays. This feat was made possible…
The new technique uses laser pulses to slice diamond into thin wafers, paving the way for its adoption as a next-generation semiconductor material. Silicon-based materials are currently the undisputed leaders in the field of semiconductors. Even so, scientists around the world are actively trying to find superior alternatives for next-generation electronics and high-power systems. Interestingly, diamonds are among the most promising materials for applications such as fast telecommunications and power conversion in electric vehicles and power plants. Despite their attractive…
Terahertz measurement system for slush skins. According to the Government Statistics Office, more than 358,000 people were injured in traffic accidents in Germany in 2022. Airbags often prevent more serious injuries. They are hidden behind a plastic panel called a slush skin. For the skin to tear open along the right lines, it is perforated meticulously after manufacture. For the airbag to fully deploy in an emergency, the material and the intended tear lines must be matched as closely as…
PALM-4U: urban planning for climate change. As climate change progresses, extreme weather events such as prolonged hot spells, storms and heavy rain are occurring ever more frequently, and cities are feeling the strain. The new urban climate model PALM-4U will allow municipal staff and city planners to simulate the effects of their planned construction projects on the urban climate, so that they can gauge the consequences of extreme weather events before they happen, improve quality of life in urban areas…
Dynamic risk management. An important challenge for the acceptance of autonomous driving is to ensure the safety of road users without risking a loss of speed. A team of scientists from the Fraunhofer Institute for Experimental Software Engineering IESE, the Fraunhofer Institute for Cognitive Systems IKS, and the University of York has now developed a dynamic risk management system as part of a ref-erence safety architecture. This provides a vehicle with a better understanding of current driving hazards. AI capabilities…
A further step in unravelling materials’ properties down to the atomic scale. Scientists of the Max-Planck-Institut für Eisenforschung develop a workflow and code to characterize defects in steels and publish their results in the journal Nature Communications. To develop advanced materials, a deep understanding of their underlying microstructure and chemistry is necessary. Knowing how defects influence the interplay between microstructure and chemical composition is crucial, as they are the entry gate for material’s failure due to corrosion or crack initiation….