Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
There is an ever-present struggle to reduce carbon-based energy sources and replace them with low or no-carbon alternatives. The process of splitting water could be the resolution. Hydrogen production is a simple, safe, and effective method to produce more energy than gasoline can by the simple process of splitting water. Harvesting energy this way as opposed to relying heavily (or at all) on carbon-based energy sources is increasingly becoming the standard. Researchers have found a method to use transition metal…
The number of incidents involving damaged electronic devices on board aircraft has increased in recent years. Most of these are caused by lithium-ion batteries, which are found in laptops and other portable electronic devices. In the LOKI-PED project, the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI and the Fraunhofer Institute for Building Physics IBP are collaborating with Airbus to assess the fire and smoke risks associated with lithium-ion batteries in cockpits and cabins. The objective is to make it safer…
Environmentally friendly coating technologies. Damp, cold conditions are the enemy of wind power. If a layer of ice forms on the rotor blades, this can result in rotational imbalance and, hence, increased wear. In such cases, the turbines often have to be shut down for several days, leading to massive losses for the operators due to the pause in electricity production. Now, for the first time, a Fraunhofer team has succeeded in using drones to protect rotor blades against ice….
Researchers report that they have developed a new composite material designed to change behaviors depending on temperature in order to perform specific tasks. These materials are poised to be part of the next generation of autonomous robotics that will interact with the environment. The new study conducted by University of Illinois Urbana-Champaign civil and environmental engineering professor Shelly Zhang and graduate student Weichen Li, in collaboration with professor Tian Chen and graduate student Yue Wang from the University of Houston, uses computer…
Diamond device shows highest breakdown voltage. To reach the world’s goal of carbon neutrality by 2050, there must be a fundamental change in electronic materials to create a more reliable and resilient electricity grid. A diamond might be a girl’s best friend, but it might also be the solution needed to sustain the electrification of society needed to reach carbon neutrality in the next 30 years. Researchers at the University of Illinois Urbana-Champaign have developed a semiconductor device made using…
Physicists at Martin Luther University Halle-Wittenberg (MLU) and Central South University in China have demonstrated that, combining specific materials, heat in technical devices can be used in computing. Their discovery is based on extensive calculations and simulations. The new approach demonstrates how heat signals can be steered and amplified for use in energy-efficient data processing. The team’s research findings have been published in the journal “Advanced Electronic Materials”. Electric current flow heats up electronic device. The generated heat is dissipated…
A computational study conducted in Brazil could help extend the working lives of these batteries, which are widely used by utilities and manufacturers. An article by researchers at the Center for Development of Functional Materials (CDMF) in Brazil describes a successful strategy to mitigate charge capacity loss in vanadium redox flow batteries, which are used by electric power utilities among other industries and can accumulate large amounts of energy. The article is published in the Chemical Engineering Journal. CDMF is a Research, Innovation and Dissemination Center (RIDC)…
Microprocessor-scale transistors detect and respond to biological states and the environment. Your phone may have more than 15 billion tiny transistors packed into its microprocessor chips. The transistors are made of silicon, metals like gold and copper, and insulators that together take an electric current and convert it to 1s and 0s to communicate information and store it. The transistor materials are inorganic, basically derived from rock and metal. But what if you could make these fundamental electronic components part…
Glass – whether used to insulate our homes or as the screens in our computers and smartphones – is a fundamental material. Yet, despite its long usage throughout human history, the disordered structure of its atomic configuration still baffles scientists, making understanding and controlling its structural nature challenging. It also makes it difficult to design efficient functional materials made from glass. To uncover more about the structural regularity hidden in glassy materials, a research group has focused on ring shapes…
Key to better manufacturing… Artificial Intelligence methods guide researchers in developing improved manufacturing processes for highly efficient solar cells – a blueprint for other research areas. Perovskite tandem solar cells combine a perovskite solar cell with a conventional solar cell, for example based on silicon. These cells are considered a next-generation technology: They boast an efficiency of currently more than 33 percent, which is much higher than that of conventional silicon solar cells. Moreover, they use inexpensive raw materials and…
ETH Zurich researchers deployed an autonomous excavator, called HEAP, to build a six metre-high and sixty-five-metre-long dry-stone wall. The wall is embedded in a digitally planned and autonomously excavated landscape and park. The team of researchers included: Gramazio Kohler Research, the Robotics Systems Lab, Vision for Robotics Lab, and the Chair of Landscape Architecture. They developed this innovative design application as part of the National Centre of Competence in Research for Digital Fabrication (NCCR dfab). Using sensors, the excavator can…
Researchers from ICIQ describe a circular process to recycle polycarbonates, a specific polymer often used in plastic applications, using less chemicals and user-friendly conditions. A month ago, the European Union banned glitter. This action was englobed in a regulation with the aim of reducing 30% of the presence of microplastics in our environment. Waste plastics are a serious problem for our eco-systems and the push for recycling of plastics in general has gained significant attention as a potential solution. “Circular…
Zinc — cheap, abundant, environmentally friendly — may be the answer to better batteries, but there’s a major problem: Aqueous zinc ion batteries (AZIBs) cannot match lithium-ion batteries in terms of power output. To test what electrode material composition might be able to bring AZIBs up to par, a research team based in China developed two organic frameworks with the same constituents but arranged in different ways. When put to the test, the framework with appropriate density of active sites…
Reducing Size, Weight and Cost through Higher Switching Frequencies and Lower Losses. Within the Research Project “PV-MoVe”, researchers at the Fraunhofer IEE investigated how to use active switching loss reduction networks for power semi-conductors to enable smaller, more lightweight, and more cost-efficient photovoltaic converters. Using newly developed additional circuitry, switching frequencies for a 50 kW PV inverter could be increased by a factor of 2.5 – 3 for the DC input stage and by a factor of 10 – 12.5…
A novel surgical implant developed by Washington State University researchers was able to kill 87% of the bacteria that cause staph infections in laboratory tests, while remaining strong and compatible with surrounding tissue like current implants. The work, reported in the International Journal of Extreme Manufacturing, could someday lead to better infection control in many common surgeries, such as hip and knee replacements, that are performed daily around the world. Bacterial colonization of the implants is one of the leading…
Textiles are a given in civil engineering: they stabilize water protection dams, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural…