Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
Prototypes within Two Years. Significantly higher storage capacity, safer operation and durability: this is what industry and research expect from future solid-state batteries compared to conventional lithium-ion batteries. A consortium involving the University of Duisburg-Essen is aiming to realize prototypes up to pilot scale. The decisive anode material was developed at the University’s Institute for Energy and Materials Processes. The Federal Ministry of Education and Research is funding the project* for two years with 1.7 million euros. The structure of…
Sensors that monitor infrastructure, such as bridges or buildings, or are used in medical devices, such as prostheses for the deaf, require a constant supply of power. The energy for this usually comes from batteries, which are replaced as soon as they are empty. This creates a huge waste problem. An EU study forecasts that in 2025, 78 million batteries will end up in the rubbish every day. A new type of mechanical sensor, developed by researchers led by Marc…
High-speed experiments will help identify lightweight, protective “metamaterials” for spacecraft, vehicles, helmets, or other objects. An intricate, honeycomb-like structure of struts and beams could withstand a supersonic impact better than a solid slab of the same material. What’s more, the specific structure matters, with some being more resilient to impacts than others. That’s what MIT engineers are finding in experiments with microscopic metamaterials — materials that are intentionally printed, assembled, or otherwise engineered with microscopic architectures that give the overall…
What happens when you expose tellurite glass to femtosecond laser light? That’s the question that Gözden Torun at the Galatea Lab, in a collaboration with Tokyo Tech scientists, aimed to answer in her thesis work when she made the discovery that may one day turn windows into single material light-harvesting and sensing devices. The results are published in PR Applied. Interested in how the atoms in the tellurite glass would reorganize when exposed to fast pulses of high energy femtosecond…
LZH Researches Oxygen-Free Production. In the field of metal processing, dealing with oxidation can be quite challenging. One potential approach involves carrying out production in an environment free from oxygen. The Laser Zentrum Hannover e.V. (LZH) is investigating how this concept can be applied in laser beam brazing and additive manufacturing. Oxygen is a disruptive factor in many production processes within the metalworking industry: Oxide layers formed during metal processing in the presence of oxygen can hinder the joining of…
The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. For around 20 years, it has been possible to modify surfaces via nanoparticles so that they concentrate or manipulate light in the desired way or trigger other reactions. Such optically active nanostructures can be found in solar cells and biological or chemical sensors, for example. In order to expand their range…
Super-resolution (SR) fluorescence microscopy, through the use of fluorescent probes and specific excitation and emission procedures, surpasses the diffraction limit of resolution (200~300 nm) that was once a barrier. Most SR techniques are heavily reliant on image calculations and processing to retrieve SR information. However, factors such as fluorophores photophysics, sample’s chemical environment, and optical setup situations can cause noise and distortions in raw images, potentially impacting the final SR images’ quality. This makes it crucial for SR microscopy developers…
Recently, a research team led by Prof. LI Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) developed a 70 kW-level high power density vanadium flow battery stack. Compared with the current 30kW-level stack, this stack has a volume power density of 130kW/m3, and the cost is reduced by 40%. Vanadium flow batteries are one of the preferred technologies for large-scale energy storage. At present, the initial investment of vanadium flow batteries is relatively high. Stack is the…
MIT chemists developed a battery cathode based on organic materials, which could reduce the EV industry’s reliance on scarce metals. Many electric vehicles are powered by batteries that contain cobalt — a metal that carries high financial, environmental, and social costs. MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used…
A system designed at MIT could allow sensors to operate in remote settings, without batteries. MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment. Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations…
A team at HZB has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with…
CASUS scientists contribute to an extensive effort to verify existing computer codes intended for materials simulations. Physicists and materials scientists can choose from a whole family of computer codes that simulate the behavior of materials and predict their properties. The accuracy of the results obtained by these codes depends on the employed approximations and chosen numerical parameters. To verify that the results from different codes are comparable, consistent with each other, and reproducible, a large group of scientists did the…
Dependence on coal and gas could be overcome in Africa first – study examines requirements for a post-fossil-fuels scenario. A joint study by the University of Tübingen, the Senckenberg Society for Nature Research, the University of Osnabrück and the University of Rwanda has found that 80 percent of the energy required in Africa could come from renewable sources by 2040 – if the capacity of existing power plants were fully utilized and all the plants currently on the drawing-board were…
The Lehigh University Plasma Control Group, supported by a new $1.6 million DOE grant, continues work on advancing plasma dynamics simulation capabilities and algorithms to control superheated gasses that hold promise for limitless, clean energy. As researchers around the world work to develop viable alternatives to fossil fuels, the prospect of nuclear fusion—harnessing the same energy-generating reactions that power the sun—has grown increasingly attractive to private equity firms. In 2022, the U.S. Department of Energy launched a partnership with investors in the…
Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material. Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the…
If we want to slow down global warming, we need to drastically reduce greenhouse gas emissions. Among other things, we need to do without fossil fuels and use more energy-efficient technologies. However, reducing emissions alone won’t do enough to meet the climate targets. We must also capture large quantities of the greenhouse gas CO2 from the atmosphere and either store it permanently underground or use it as a carbon-neutral feed material in industry. Unfortunately, the carbon capture technologies available today…