Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
Janus nanosheets bring unprecedented control to preparation of nanoscrolls. Researchers from Tokyo Metropolitan University have come up with a new way of rolling atomically thin sheets of atoms into “nanoscrolls.” Their unique approach uses transition metal dichalcogenide sheets with a different composition on either side, realizing a tight roll that gives scrolls down to five nanometers in diameter at the center and micrometers in length. Control over nanostructure in these scrolls promises new developments in catalysis and photovoltaic devices. Nanotechnology…
If 1 kilogram of hydrogen allows for approximately 100 kilometers of range in a car, a hydrogen tank for an electric motorcycle can also fit within the limited space of its design. A more challenging task is integrating a complete fuel cell system (which converts onboard hydrogen into electrical energy) into the frame construction. A German-Czech consortium of research institutions and manufacturing companies is now taking on this challenge: By the end of 2025, they will construct a fully functional…
Bayreuth researchers combine hydrogels and fibres in a new technology. Prof. Dr Leonid Ionov and his team at the University of Bayreuth have developed a new type of 3D printing technology that combines hydrogels and fibres. The innovative process, combined in one device for the first time, enables the production of constructs with fibrous structures and uniaxial cell alignment. The research results, published in the journal “Advanced Healthcare Materials”, harbour potential for the artificial production of biological tissue. In the…
New method for testing the structural integrity of buildings. Building inspection benefits from laser-based measuring systems providing quick and accurate digital measurement data. Laser scanners are already being used to measure building geometries or to detect surface damage. In the future, lasers will help detect subsurface damage, too. Up until now, the only way of detecting hidden defects was the so-called impact hammer test. When it comes to assessing the condition of a building, visual inspections are still widely used….
Engineers at the University of California San Diego have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous sensing technologies. “With the extremely high sensitivity of our device, we ultimately hope to detect even the presence of one lead ion in a reasonable volume of water,” said…
…that can withstand extreme environments. Unlike conventional refractory conductimaterials, it not oxidizeand maintains performance at temperatures up to 1,000°C in air. Expected to be used in a wide range of extreme environments, including space, aerospace and thermophotovoltaic(TPV) system. Thermal radiation is electromagnetic radiation emitted by all objects with temperature and most representatively, there is the solar radiation spectrum that enters the Earth and causes the greenhouse effect. Controlling and utilizing the thermal radiation energy emitted from solar power, thermal power…
Groundbreaking nanocavities unlock new frontiers in light confinement. Dr. Hanan Herzig Sheinfux, from Bar-Ilan University: “What started as a chance discovery, may well open the way to new quantum applications, pushing the boundaries of what we thought was possible.” In a significant leap forward for quantum nanophotonics, a team of European and Israeli physicists, introduces a new type of polaritonic cavities and redefines the limits of light confinement. This pioneering work, detailed in a study published today in Nature Materials,…
Scrap aluminum transforms recycling life cycle. Energy savings approaching 90 percent expected from employing entirely post-consumer aluminum to make high-grade building components. The circular economy just closed the loop on scrap aluminum, thanks to a new patent-pending technology developed at the Department of Energy’s Pacific Northwest National Laboratory. That twisted aluminum mesh, those banged up bicycle frames, and the used car parts now languishing in junk yards could gain new life as building structures such as door and window frames,…
Oxidation can degrade the properties and functionality of metals. However, a research team co-led by scientists from City University of Hong Kong (CityU) recently found that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain, outperforming most conventional super-elastic metals. They also discovered the physical mechanisms underpinning this super-elasticity. Their discovery implies that oxidation in low-dimension metallic glass can result in unique properties for applications in sensors, medical devices and other nanodevices. In recent years, the functional…
Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, Germany and the SLAC National Accelerator Laboratory in the United States have gained new insights into the development of the light-induced ferroelectric state in SrTiO₃. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain the emergence of a more ordered dipolar structure than in equilibrium…
Producing sustainable fuels from solar energy is an ambitious project and presents major challenges to people and material. In the MAfoS project, researchers at the Fraunhofer Center for High Temperature Materials and Design HTL are developing materials for the first industrial solar-to-fuel demonstration plant. It sounds almost like a fairytale: Sustainable fuels are created from water, CO2 and sunlight in a high, mirror-lined tower. Fraunhofer experts are contributing their know-how to this plan in a special project: “Material Advancements for…
Photovoltaic (PV) modules based on perovskite silicon tandem solar cells have the potential to achieve significantly higher efficiencies than today’s standard silicon PV modules. A research team from the Fraunhofer Institute for Solar Energy Systems ISE has now produced a PV module using perovskite silicon tandem solar cells from Oxford PV. With an efficiency of 25 percent and an output of 421 watts on an area of 1.68 square meters, it is the world’s most efficient silicon perovskite tandem solar…
…with integrated sensor function. With their high chemical and thermal resistance, metal cushions are a sensible alternative to elastomer components. The elasticity and damping of the wire mesh is based on the interaction of individual wire segments during deformation. Researchers at Fraunhofer LBF have harnessed this effect in the form of a new sensor concept. The new sensor technology can be integrated into existing systems in a cost-effective and space-neutral manner and directly detects vibrations and loads. Processes and bearing…
…unveils high-performance ceramics for extreme environments. Research team identifies hundreds of representatives of a particularly heat-resistant class of materials. An international research team has developed a method for rapidly discovering new types of materials that function at extremely high temperatures of several thousand degrees Celsius. These high-performance ceramics could one day form the basis for more robust coatings, batteries and radiation-resistant devices. Dr. Rico Friedrich, research group leader at Dresden University of Technology (TUD) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), made…
Our built environment is aging and failing faster than we can maintain it. Recent building collapses and structural failures of roads and bridges are indicators of a problem that’s likely to get worse, according to experts, because it’s just not possible to inspect every crack, creak and crumble to parse dangerous signs of failure from normal wear and tear. In hopes of playing catch-up, researchers in Drexel University’s College of Engineering are trying to give robotic assistants the tools to…
A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This Kobe University development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints. An object has color when light of a specific wavelength is reflected. With traditional pigments, this happens…