Using 3D technology and interdisciplinary expertise, a research team has explored Buddhist temples in the remote Dolpo region of Nepal and digitized them for posterity In the high-altitude and extremely remote region of Dolpo in north-west Nepal, there are numerous Buddhist temples whose history dates back to the 11th century. The structures are threatened by earthquakes, landslides and planned infrastructure projects such as the Chinese Belt and Road Initiative. There is also a lack of financial resources for long-term maintenance….
First-of-their-kind snapshots reveal byproduct crippling powerful, experimental cells. For decades, scientists have tried to make reliable lithium-metal batteries. These high-performance storage cells hold 50% more energy than their prolific, lithium-ion cousins, but higher failure rates and safety problems like fires and explosions have crippled commercialization efforts. Researchers have hypothesized why the devices fail, but direct evidence has been sparse. Now, the first nanoscale images ever taken inside intact, lithium-metal coin batteries (also called button cells or watch batteries) challenge prevailing…
Max Planck scientists publish their latest findings in the journal Nature Materials. Hydrogen – the smallest of all atoms and yet becoming more and more important in terms of climate neutrality. While politics, industry and research are heading to use as much hydrogen as possible as a sustainable energy carrier, hydrogen embrittlement of high-strength alloys has become one of the major issues impeding the realization of the hydrogen economy. These materials are urgently needed for the automotive and aerospace industry…
The absorption of energy from laser light by free electrons in a liquid has been demonstrated for the first time. Until now, this process was observed only in the gas phase. The findings, led by Graz University of Technology, open new doors for ultra-fast electron microscopy. The investigation and development of materials crucially depends on the ability to observe smallest objects at fastest time scales. The necessary spatial resolution for investigations in the (sub-)atomic range can be achieved with electron…
New findings in a new material bring us closer to understanding superconductivity. The discovery of the first high-temperature superconductor in 1986 brought with it the hope that superconductivity would one day revolutionise power transmission, electronic devices and other technologies. Materials that show superconductivity (zero electrical resistance) generally do so at an extremely low temperature. For their use to become widespread and world-changing, we need to develop a material that is superconducting close to room temperature. Research showed that the first…
New nickelate materials give scientists an exciting new window into how unconventional superconductors carry electric current with no loss at relatively high temperatures. Ever since the 1986 discovery that copper oxide materials, or cuprates, could carry electrical current with no loss at unexpectedly high temperatures, scientists have been looking for other unconventional superconductors that could operate even closer to room temperature. This would allow for a host of everyday applications that could transform society by making energy transmission more efficient,…
Researchers at the University of Freiburg and the University of Stuttgart have developed a new process for producing movable, self-adjusting materials systems with standard 3D-printers. These systems can undergo complex shape changes, contracting and expanding under the influence of moisture in a pre-programmed manner. The scientists modeled their development based on the movement mechanisms of the climbing plant known as the air potato (Dioscorea bulbifera). With their new method, the team has produced its first prototype: a forearm brace that…
In the design and manufacture of a wide range of electronic devices, such as smartphones and self-driving vehicles, new and expanded functionalities must constantly be accommodated in the smallest possible space. Advanced packaging – complex assembly and interconnection technology for semiconductor components – has emerged as an essential technology for the integration of photonics, optics and electronics. In the ongoing EU project APPLAUSE, the participants are focusing on the development of new tools, methods and processes for the mass production…
Synhelion and Empa are conducting a joint research project, co-funded by the Swiss Innovation Agency Innosuisse, to further develop a high-temperature energy storage solution that is a key component in the production of climate-friendly solar fuels. The project will enable the cost-effective and scalable storage of high-temperature solar heat at over 1’000°C for the first time. The storage technology is expected to be used in Synhelion’s first industrial-scale solar fuel production facility, which will be built in 2022. Synhelion produces…
Although the history of bitumen dates back to the third millennium BC, only little is known about its surface structure. Researchers from TU Wien are now shedding light on the nature of the bitumen surface using physicochemical analyses. While atomic force microscopy and scanning electron microscopy have already provided information on the morphology of bitumen surfaces in the past, for a long time it was not known whether surface and chemical composition correlate with each other. However, the chemical composition…
This flexible, durable robot can traverse complex terrain and quickly swerve to avoid obstacles, qualities that could one make it an asset for search and rescue operations. Many insects and spiders get their uncanny ability to scurry up walls and walk upside down on ceilings with the help of specialized sticky footpads that allow them to adhere to surfaces in places where no human would dare to go. Engineers at the University of California, Berkeley, have used the principle behind…
Research and Industry Join Forces to Perform Long-Term Tests On Different System Designs. Floating photovoltaic power plants can contribute to the expansion of renewable energy without taking up land. The Fraunhofer Institute for Solar Energy Systems ISE, RWE Renewables and the Brandenburg University of Technology Cottbus-Senftenberg (BTU) are working together to further develop this innovative technology with other partners. In the joint research project PV2Float, the partners are to test several floating PV systems with different structure designs under real…
Automated production of CFRP composite parts… Fast, lightweight and fuel efficient: RACER, the high-speed helicopter reaches flying speeds of up to 400 kilometers per hour. The components of its outer shell are made by an innovative, highly automated manufacturing process. A research team at the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV developed the innovative, sustainable method together with Airbus Helicopters. At over 400 kilometers per hour, RACER — short for Rapid and Cost-Effective Rotorcraft — moves through…
– effect of doping on the photocatalyst SrTiO3. New study shows how doping affects the charge properties of a photocatalyst, potentially paving the way for better solar energy conversion. For many years, researchers have been focused on developing technologies that can help us fight the imminent climate change crisis. They have one goal in common: finding sustainable energy sources that can replace the environmentally toxic fossil fuels. “Photocatalysts” that drive an artificial process that replicates photosynthesis (in which solar energy…
Natural wood remains a ubiquitous building material because of its high strength-to-density ratio; trees are strong enough to grow hundreds of feet tall but remain light enough to float down a river after being logged. For the past three years, engineers at the University of Pennsylvania’s School of Engineering and Applied Science have been developing a type of material they’ve dubbed “metallic wood.” Their material gets its useful properties and name from a key structural feature of its natural counterpart:…
Mobility of the future… Scientists at the Fraunhofer Institute for Laser Technology ILT, in collaboration with project partners, have succeeded in developing a novel industrial manufacturing process, one that makes it possible to use low-cost FR4 circuit board substrates in power electronics, for example in electric motors. Compared to conventional power electronics made of ceramics, the so-called hybrid printed circuit boards are not only much more versatile, but also up to 20 times cheaper. This could close a gap in…
The right connection… Many devices whose availability and reliability are essential are now electronically controlled. It is simply inconceivable what the consequences would be of the failure of a respirator or a vehicle assistance system. In particular, the soldered joints between the microelectronic components are of special importance. Scientists at Fraunhofer IKTS develop material models based on real measurement data for a wide variety of solder alloys in a uniquely wide temperature range. This makes virtual electronics design more accurate,…