Physicists from the St. Petersburg State Institute of Technology have invented an unusual method for improving concrete. The researchers believe that the concrete structure will become more uniform, and concrete products will obtain unprecedented durability and water-resistance if, while hardening, concrete is exposed to the influence of electromagnetic field of a strictly determined frequency.
The actual process is as follows: the concrete blocks while they are still in the mould ar
Technique could help bring efficiency of biology to man-made materials
A Princeton chemist has developed a general mathematical system for designing materials that perform two functions at once, even when the desired properties sometimes conflict with each other.
Salvatore Torquato and colleagues used computers to calculate the optimum structure for any material that is a composite of two substances with differing properties. The achievement is the first simple example of a
POLYMAT, the University of the Basque Country’s Institute of Polymer Materials, is helping to solve the problem of contamination of polymers obtained through polymerisation processes involving emulsions. With European funding obtained four years ago, the project on removing monomer residues from polymers was undertaken. POLYMAT has been working in this field with the collaboration of three other universities (from Germany, Greece and Switzerland) as well as three foreign companies.
Unfortun
Researchers at the University of Sheffield have transformed ordinary polyurethane packaging foam into a superfoam that not only refuses to be crushed but also actually increases in thickness when stretched. Under the same stresses conventional foam loses its resilience and its protective qualities, so the superfoam’s benefits for the packaging industry are obvious.
The secret lies in a new “cooking” technique and in the cooking oil, which has to be organic; olive oil, for example, will do ni
For several years, Caisa Andersson has been trying to create a better barrier against moisture and oxygen in our food packaging. On December 20, she will submit her doctoral dissertation at Karlstad University in Sweden.
Latex has long been used for various types of surface treatment of paper. In recent years, interest has been focused on the polymer’s characteristic of forming a protective coating on the surface of paper.
“Surface treatment is used to create a barrier against mois
Nanotechnology could make life easier for computer manufacturers and tougher for terrorists, reports a Purdue University research team.
A group led by Jillian Buriak has found a rapid and cost-effective method of forming tiny particles of high-purity metals on the surface of advanced semiconductor materials such as gallium arsenide. While the economic benefits alone of such a discovery would be good news to chip manufacturers, who face the problem of connecting increasingly tiny com
nnovationen aus der industriellen Gemeinschaftsforschung
Pro Jahr gehen in Deutschland etwa 22 Mio. Paar Kinderschuhe über die Ladentheke. Rund 30 Prozent davon stellen deutsche Firmen her. Neben seinem modischen Aussehen und seiner richtigen Passform ist die Fähigkeit zur Wärme- und Feuchtigkeitsregulation maßgeblich für den Komfort eines Schuhs. Die Füße sollen warm und trocken bleiben und vor äußeren Einwirkungen geschützt werden. Der Abtransport des Fußschweißes durch Socke und S
The basque company SK10, which works in the integration of aeronautical structures, has given a significant step forward in its innovation range within compound materials of carbon fibre.
Recently, SK10 has signed with the company EADS-CASA a contract for the development, industrialisation and subsequent mass production of the leading edges of the horizontal stabiliser for the new aircraft Falcon F7X, of the French company DASSAULT.
The development of horizontal stabiliser
A team of scientists from the U.S. Department of Energys Brookhaven National Laboratory, Harvard University, and Bar-Ilan University in Israel have grown ultrathin films made of organic molecules on the surface of liquid mercury. The results, reported in the November 15, 2002, issue of Science, reveal a series of new molecular structures that could lead to novel applications in nanotechnology, which involves manipulating materials at the atomic scale.
Growing molecular films on liquid
The success of many advanced technologies that use devices such as sensors and actuators, including gyroscopes and optical devices, depends on microscopic components called microelectromechanical systems (MEMS) devices made of polycrystalline silicon (polysilicon). Researchers at Case Western Reserve University report in the November 8 issue of Science that miniature micron-sized polysilicon laboratory specimens subjected to cyclic tension/compression loading undergo fatigue, and could ultimately fa
Extreme cold and high heat help optimize the metal’s microstructure
Combining old-fashioned metal-working techniques with modern nanotechnology, engineers at The Johns Hopkins University have produced a form of pure copper metal that is six times stronger than normal, with no significant loss of ductility.
The achievement, reported in the Oct. 31 issue of the journal “Nature,” is important because earlier attempts to strengthen a pure metal such as copper have almost always
Dolphins, long considered the second-smartest species on the planet, recognize one another by name, possess a distinct concept of “self’ and, it turns out, have some surprisingly good ideas about techniques for keeping the hulls of maritime ships clean.
Karen L. Wooley, Ph.D., professor of chemistry at Washington University in St. Louis, has noted the shape and texture of dolphin skin and how it naturally prevents marine creatures from clinging to dolphin skin. The observation fits into h
Researchers report in the Oct. 11 “Science” the first detection of a living organism that makes a copper-containing mineral structure as part of its skeleton. The finding is remarkable because the amount of copper detected in the jaw tip of the marine bloodworm would normally be toxic to an organism.
The researchers determined that copper also occurs in non-mineral form in the bloodworm jaw where it may act as a structural element in cross-linking long chains of fibrous proteins. According
A process developed at Ohio State University for shaping metal parts using magnetism has reached a new milestone — one that may cut manufacturing costs and help preserve the environment.
The process could also expand manufacturers’ choice of available metals, and enable the use of aluminum parts in lighter, fuel-efficient automobiles.
Glenn S. Daehn, professor of materials science and engineering, and his colleagues pioneered hybrid electromagnetic metal forming in 1999, while col
Applications include nanotechnology, more
Defects such as cracks in a material are responsible for everything from malfunctioning microchips to earthquakes. Now MIT engineers have developed a model to predict a defects birthplace, its initial features and how it begins to advance through the material.
The model could be especially useful in nanotechnology. “As devices get smaller and smaller, understanding the phenomena of defect nucleation and growth becomes more and more
The technology centre GAIKER of the Basque Country is working on a project whose aim is to develop intelligent polymers and discover their opportunities. Similarly, it will study the possibilities to introduce those polymers in the existing structures in order to promote their applicability and to create new enterprise initiatives.
GAIKER researches in polymers the elaboration and transformation of intelligent materials. For that aim, it develops its own technologies and then adjust them to