Brain size determines whether fish hunters or slackers

Prof. Rob McLaughlin has discovered that foraging behaviour of brook trout is related to the size of a particular region in the fish's brain.

“We found that the fish that swim around in the open in search of food have larger telencephalons than the fish that sit along the shoreline and wait for food to swim by in the water column,” said the integrative biology professor.

“This means there is a correlation between foraging behaviour and brain morphology.”

The telencephalon is a brain region involved with fish movement and use of space.

“It's responsible for a fish's ability to swim around to different places and remember landmarks in the environment so they don't get lost.”

In previous research, McLaughlin discovered that brook trout display two personality types: fish that are active foragers and appear to be risk takers, and those that are sedentary and apparently more timid.

“These are young fish that have been foraging for less than a month, and we are already seeing a difference in the propensity to take risks and move around. This made us wonder if these differences were significant biologically.”

For the current research, which was recently published in the journal Behavioral Ecology and Sociobiology, McLaughlin and researcher Alexander Wilson collected these two types of fish from the Credit River near Toronto and measured the size of their telencephalon region.

They also measured the brain's olfactory bulb to ensure that the active foragers did not simply have larger brains overall than the sedentary fish.

“We found there was no significant difference in the size of the olfactory bulb between the two types of fish,” he said. “We picked this part of the brain because trout are visual feeders, so the olfactory bulb is not tied to foraging, and it's also an area that's near the telencephalon.”

Although this research has shown that the fish's feeding activity is tied to brain structure, McLaughlin said it is still unclear whether behavioural differences reflect initial differences in the brain or whether the brain changes in response to differences in behaviour.

“It's possible there is something in the environment or in the fish's genetic makeup that is making some fish more active than others, and this level of activity is altering the brain,” he said.

“There is evidence that fish are plastic and can change structure based on where neurons are developing more rapidly.”

Either way, this finding will help in understanding the neural mechanism behind different foraging behaviours observed in wild animal populations.

“It's a huge step towards understanding why different types of personalities exist in the same species and how diversity arises in a population. We tend to focus on our impact on the environment and how our actions are reducing biodiversity and overlook processes in the environment that may be creating diversity.”

Media Contact

Prof. Robert McLaughlin EurekAlert!

More Information:

http://www.uoguelph.ca

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors