APL regulates vascular tissue identity in Arabidopsis

Plants have a conductive tissue, phloem, for transporting sugars and hormones to non-green parts after photosynthesis. Phloem has two basic cell types, enucleate sieve elements (SE) and companion cells (CC). Scientists from the University of Helsinki have developmentally analyzed the process of phloem development in Arabidopsis plant and identified a mutation in a novel gene that is required for instructing phloem differentiation in young, developing plant tissue. Their article is published in Nature on 13th of November.

ALTERED PHLOEM DEVELOPMENT (APL) gene encoding a MYB-coiled-coil type transcription factor is required for phloem identity in Arabidopsis. Phloem is established through asymmetric cell divisions and subsequent differentiation. We show that both processes are impaired by a recessive apl mutation. This is associated with formation of cells that have xylem characteristics in the position of phloem. APL has an expression profile consistent with a key role in phloem development.

APL is the first gene function specifically assigned for differentiation of conductive tissue in plants. Further analysis of this gene function is likely to increase our understanding of the development and function of phloem in some agriculturally and ecologically important contexts, such as in the storage roots of vegetables and tree trunks.

Media Contact

Minna Meriläinen alfa

All news from this category: Agricultural and Forestry Science

Back to the Homepage

Comments (0)

Write comment

Latest posts

Innovations through hair-thin optical fibres

Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means…

Artificial intelligence for sustainable agriculture

ZIM cooperation network on AI-based agricultural robotics launched The recently approved ZIM cooperation network “DeepFarmbots” met virtually for its official kick-off on November 25. The central goal of the network…

Teamwork in a molecule

Chemists at the University of Jena harness synergy effect of gallium Chemists at Friedrich Schiller University Jena have demonstrated the value of “teamwork” by successfully harnessing the interaction between two…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close