Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is process technology?

Process technology is when a product is manufactured from a raw material by using chemical, biological or physical processes.

Process technology can be viewed as the time between the production of a raw material and the manufacture of a product. The number of processes that are involved plays no role here. A good example is the manufacture of various metals from iron ore. Or petroleum, which has to be processed so that various end products can be manufactured using process technology. Process technology uses processes to modify more than just raw materials. This can include recyclable materials for instance. Especially in today's "green environment",process technology is utilized to process renewable raw materials , or bioenergy as it's called. This can involve different grains and other raw materials such as rape seed, from which bioenergy can be produced through various processes.

There is more than one process technology

Process technology is not limited to a single process. It can be classified into five different process technologies, all of which involve their own process. First, there is thermal process technology , which deals with distillation. In contrast to thermal process technology, chemical process technology relies on chemical processes such as hydrolysis. Electrochemical process technology utilizes electrochemical processes such as the synthesis of various chemicals. Process technologies based solely on biological processes focus more on the use of bacteria, fungi or yeast.

Every process technology brings advantages and disadvantages. For this reason, the process technology must be selected on a case by case basis. Companies frequently utilize various process technologies to achieve the optimum result.

Hydrolysis in chemicals and industry

Hydrolysis uses a chemical process to split water into hydrogen and oxygen. Hydrolysis also involves the chemical separation of crystallization water. The opposite of hydrolysis is dehydration synthesis, which as the term implies involves the splitting of hydrogen instead of water.

How does hydrolysis work?

The application of phosphoric or sulfuric acid as catalysts in hydrolysis causes alcohols to react for instance. The water then separates from the alcohol through the hydrolysis process. Hydrolysis can also be induced by using zinc chloride. Viewed on a large-scale, hydrolysis can also be activated at a specific pressure, which triggers the hydrolysis during the vapor phase. Alcohols frequently react with one another during hydrolysis. This hydrolysis process creates one molecule from two molecules of ethanol alcohol during the vapor phase at a temperature of 260°C. All of this can be triggered through hydrolysis.

What else can be produced through hydrolysis?

### invalid font number 31506 In addition to acetic anhydride, which is produced by hydrolyzing acetic acid, hydrolysis is also used to produce phthalicanhydride from phthalic acid. These processes should be carried out only by trained chemists and physicists. Some processes are extremely complex and can trigger various side effects if carried out improperly. If the human body is exposed to excessive levels of acid during a process, it can result in damage to the respiratory tract.

Hydrolysis and process technology work hand in hand. A wide range of industries rely on hydrolysis for producing a variety of materials, which makes hydrolysis ideally suited for manufacturing processes.

Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight

Two INRS teams join forces and develop a new ecological process to degrade atrazine

Atrazine is one of the most widely used pesticides in North America. Researchers at the Institut National de la Recherche Scientifique (INRS) have developed a...

16.01.2020 | nachricht Read more

TUM Agenda 2030: Combining forces for additive manufacturing

With its agenda TUM.Additive, the Technical University of Munich (TUM) is kicking off a comprehensive research focus on additive manufacturing. Together with high-tech partners in industry, TUM has founded the "Bavarian Additive Manufacturing Cluster" with the aim of establishing Bavaria as the prominent economic region for digital manufacturing technologies. TUM is now implementing the first milestone of its future strategy “TUM Agenda 2030”.

Using advanced, innovative materials and intelligent combinations, new process technologies based on digital 3D designs can be deployed to develop a wide...

09.10.2019 | nachricht Read more

Copper oxide photocathodes: laser experiment reveals location of efficiency loss

Copper oxide (Cu2O) is a very promising candidate for future solar energy conversion: as a photocathode, the copper oxide (a semiconductor) might be able to use sunlight to electrolytically split water and thus generate hydrogen, a fuel that can chemically store the energy of sunlight.

Copper oxide has a band gap of 2 electron volts, which matches up very well with the energy spectrum of sunlight. Perfect copper oxide crystals should...

10.05.2019 | nachricht Read more

NIST research sparks new insights on laser welding

Researchers discuss ambitious project to understand the basic principles of laser welding better than ever before

On its surface, the work is deceptively simple: Shoot a high-power laser beam onto a piece of metal for a fraction of a second and see what happens. But...

02.05.2019 | nachricht Read more

USP Lasers Conquer Macroprocessing

Ultrashort pulse (USP) lasers have become firmly established in science and micromachining. At this year's “UKP-Workshop: Ultrafast Laser Technology” in Aachen, a new trend has emerged: Macroprocessing. Since multi-100-watt USP lasers up into the kW range have become available, the industry is looking at them with great interest for large-area applications. For this purpose, the institute is developing the complete process chain right through to fully digitized processes.

The UKP-Workshop has grown once again: More than 170 participants from 14 countries came to Aachen this year to discuss the latest trends in the development of...

25.04.2019 | nachricht Read more

NRL develops laser processing method to increase efficiency of optoelectronic devices

Scientists at the U.S. Naval Research Laboratory (NRL) discovered a new method to passivate defects in next generation optical materials to improve optical quality and enable the miniaturization of light emitting diodes and other optical elements.

"From a chemistry standpoint, we have discovered a new photocatalytic reaction using laser light and water molecules, which is new and exciting," said Saujan...

16.04.2019 | nachricht Read more

Hollow structures in 3D

Freiburg researchers succeed in printing channel structures in glass

Quartz glass is the preferred material for applications that require long-term use because of its high chemical and mechanical stability and excellent optical...

29.03.2019 | nachricht Read more

Design treatment of advanced metals producing better sculpting

New process targets improvements for defense, vehicles and health products

Most people may not realize it but they encounter products made with exotic or advanced metals every day.

08.03.2019 | nachricht Read more

Laser Processes for Multi-Functional Composites

Since composites combine the advantages of dissimilar materials, they can be used to exploit great potential in lightweight construction. At JEC World 2019 in Paris in March, scientists from the Fraunhofer Institute for Laser Technology ILT will present a broad range of laser-based technologies for the efficient production and processing of composite materials. Visitors to the joint booth of the Aachen Center for Integrative Lightweight Construction AZL, Hall 5A/D17, will gain insight into joining and cutting processes as well as surface structuring.

Experts from Fraunhofer ILT are researching and developing laser processes for the economical joining, cutting, ablation or drilling of composite materials,...

18.02.2019 | nachricht Read more

Efficient reactor dismantling by laser beam cutting?

Can laser beam cutting underwater be used for efficient reactor dismantling? This question will be investigated by scientists of the Laser Zentrum Hannover e.V. (LZH) within the scope of the AZULa project. In a feasibility study, they develop a laser beam cutting process and construct a compact cutting head for use in a radiologically activated and contaminated underwater environment.

This new system is supposed to enable the direct dismantling of nuclear facilities (reactor pressure vessels). Laser beam cutting offers significant advantages...

05.02.2019 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Broad spectrum: Novel hybrid material proves an efficient photodetector

Digital cameras as well as many other electronic devices need light-sensitive sensors. In order to cater for the increasing demand for optoelectronic components of this kind, industry is searching for new semiconductor materials. They are not only supposed to cover a broad range of wavelengths but should also be inexpensive.

A hybrid material, developed in Dresden, fulfils both these requirements. Himani Arora, a physics PhD student at Helmholtz-Zentrum Dresden-Rossendorf (HZDR),...

Im Focus: X-ray vision through the water window

The development of the first high-repetition-rate laser source that produces coherent soft x-rays spanning the entire 'water window' heralds the beginning of a new generation of attosecond technology

The ability to generate light pulses of sub-femtosecond duration, first demonstrated some 20 years ago, has given rise to an entirely new field: attosecond...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

New research insights into how a group of novel organelle-based disorders affects cells

09.04.2020 | Life Sciences

Researchers demonstrate a platform for future optical transistors

09.04.2020 | Physics and Astronomy

Broad spectrum: Novel hybrid material proves an efficient photodetector

09.04.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>