Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blasting off to Mercury and other planets with astronomy

Man has always been drawn to the discovery of alien worlds and planets. And this urge has reached its zenith thanks to astronomy and travel to alien planets.

Astronomy adds a whole new dimension to the scientific impulse to discover and conquer other planets and systems beyond earth's realm. Astronomy allows scientists to not only carry out earth-based observations of planets such as Mercury. It also provides the basis for the continual discovery of new galaxies and unknown planets. Astronomy has made huge advances, due in part to the exploration of Mercury. innovations-report provides continuous coverage of the general advances being made in astronomy, as well as those specific to the discovery of Mercury, in continuously updated articles and scientific reports about astronomy, Mercury and other planets and galaxies.

Scientific look at Mercury

innovations-report encompasses a comprehensive astronomy database filled with a rich assortment articles and reports on all areas of science, research and innovations. This of course includes a large selection of documents on physics and astronomy. Whether it's achievements in astronomy, the discovery of new planets or progress in the journey to Mercury, innovations-report provides readers all of the latest developments from numerous independent research sources on the subjects of "Mercury", "planets" and general astronomy.

Astronomy - an interdisciplinary field

Apart from finding the right documents and sources covering technical advances in astronomy, readers can also learn about the findings and thought processes of other disciplines (philosophy for instance) that are actively examining astronomy and its approaches, as well as plans for journeys to planets like Mercury. The database contains a large selection of free information and articles covering basic issues ranging from "How far is Mercury from earth? " to the composition of Mercury and other planets. The path to the various planets, be it Mars, Pluto or Mercury, is not necessarily light years removed. A visit to innovations-report leads the reader to remote worlds of astronomy, alien planets and galaxies, planets related to Mars and Mercury, through the Milky Way and into black holes. Or simply put, through the entire cosmos of astronomy.

How heavy is Mercury?

Determining the weight of a planet like Mercury would appear to be a difficult undertaking. After all, it's not as simple as placing a planet on a scale, whether it's Mercury or some other planet. Such aspects are nevertheless a part of astronomy. With innovations-report.com, readers can get an exciting look at the world of astronomy, Mercury and other planets. Among other information, you can find reports that explain how researchers go about calculating the weight and dimensions of Mercury and other planets. Astronomy does not involve dreaming. Instead, it has more to do with applying methods and strategies from the field of physics. The distance to the planets is a constant challenge for researchers. Those with an interest in astronomy can rely on innovations-report to discover how scientists tackle these challenges, what knowledge they have gained about planets such as Mercury and the progress toward journeys to other planets.

Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Non-volatile control of magnetic anisotropy through change of electric polarization

Researchers from Kanazawa University use electrical polarization to control magnetic properties aiming for advanced memory applications

The ability to control the magnetic properties of a material using electricity is important for the development of computer technology, particularly...

12.11.2019 | nachricht Read more

Thorium superconductivity: Scientists discover new high-temperature superconductor

A group of scientists led by Artem Oganov of Skoltech and the Moscow Institute of Physics and Technology, and Ivan Troyan of the Institute of Crystallography of RAS has succeeded in synthesizing thorium decahydride (ThH10), a new superconducting material with the very high critical temperature of 161 kelvins. The results of their study, supported by a Russian Science Foundation grant, were published in the journal Materials Today.

A truly remarkable property of quantum materials, superconductivity is the complete loss of electrical resistance under quite specific, and sometimes very...

11.11.2019 | nachricht Read more

A distinct spin on atomic transport

Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics

One of the more unexpected things that can be done with charge-neutral atoms is to use them to emulate the fundamental behaviour of electrons. In the past few...

11.11.2019 | nachricht Read more

Photosynthesis seen in a new light by rapid X-ray pulses

The ability to transform sunlight into energy is one of Nature's more remarkable feats. Scientists understand the basic process of photosynthesis, but many crucial details remain elusive, occurring at dimensions and fleeting time scales long deemed too minuscule to probe.

Now, that is changing.

In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the...

11.11.2019 | nachricht Read more

Machine learning enhances light-beam performance at the advanced light source

Successful demonstration of algorithm by Berkeley Lab-UC Berkeley team shows technique could be viable for scientific light sources around the globe

Synchrotron light sources are powerful facilities that produce light in a variety of "colors," or wavelengths - from the infrared to X-rays - by accelerating...

08.11.2019 | nachricht Read more

Flatland light

Researchers create rewritable optical components for 2D light waves

In 1884, a schoolmaster and theologian named Edwin Abbott wrote a novella called Flatland, which tells the story of a world populated by sentient...

07.11.2019 | nachricht Read more

HKU astronomy research team unveils one origin of globular clusters around giant galaxies

A study led by Dr Jeremy Lim and his Research Assistant, Miss Emily Wong, at the Department of Physics of The University of Hong Kong (HKU), utilizing data from the Hubble Space Telescope, has provided surprising answers to the origin of some globular clusters around giant galaxies at the centers of galaxy clusters. Conducted in collaboration with Professor Thomas Broadhurst at the Ikerbasque in Spain and a Visiting Research Professor at the HKU Department of Physics, Dr Youichi Ohyama at the Academia Sinica Institute of Astronomy & Astrophysics in Taiwan, and Dr Elinor Medizinski at Princeton University in the USA, their work is reported in the journal paper "Sustained Formation of Progenitor Globular Clusters in a Giant Elliptical Galaxy" published recently on the Nature Astronomy website.

Globular clusters are the oldest visible objects in the Universe - each contains hundreds of thousands to occasionally over ten million stars all born at...

06.11.2019 | nachricht Read more

Ultrafast quantum motion in a nanoscale trap detected

KAIST researchers have reported the detection of a picosecond electron motion in a silicon transistor. This study has presented a new protocol for measuring ultrafast electronic dynamics in an effective time-resolved fashion of picosecond resolution. The detection was made in collaboration with Nippon Telegraph and Telephone Corp. (NTT) in Japan and National Physical Laboratory (NPL) in the UK and is the first report to the best of our knowledge.

When an electron is captured in a nanoscale trap in solids, its quantum mechanical wave function can exhibit spatial oscillation at sub-terahertz frequencies.

06.11.2019 | nachricht Read more

NASA's TESS presents panorama of southern sky

The glow of the Milky Way -- our galaxy seen edgewise -- arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA's Transiting Exoplanet Survey Satellite (TESS). Constructed from 208 TESS images taken during the mission's first year of science operations, completed on July 18, the southern panorama reveals both the beauty of the cosmic landscape and the reach of TESS's cameras.

"Analysis of TESS data focuses on individual stars and planets one at a time, but I wanted to step back and highlight everything at once, really emphasizing...

06.11.2019 | nachricht Read more

Physics of windshield-cracking raindrops could demolish kidney stones

New models of a phenomenon first seen in the circular cracking of supersonic jet windshields flying through rain could point to better approaches of pulverizing kidney stones

A plane has to be going pretty fast for a mere raindrop to crack its windshield, but it can happen. Now, new models of the physics behind the improbable feat...

06.11.2019 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>