Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations from the fields of bionics, marine biology and microbiology

Understanding nature and transferring its traits to technology is not only the objective of bionics, but also of marine biology and microbiology.

Bionics, marine biology or microbiology. Here you can find scientific reports and articles about achievements and developments in the fields of bionics, marine biology and microbiology. Technical research departments at many universities and institutes are examining and learning from nature and then collaborating with the fields of bionics, marine biology and microbiology. Although Arnold Gehlen once labeled humanity as a "flawed being" that had to create its own culture to survive nature's environment, we can be certain he had not yet considered the opportunities presented by bionics, marine biology and microbiology. Science is meanwhile using the traits of the flawed being to contemplate how to utilize bionics, marine biology and microbiology to copy animals, plants and the rest of the environment. Because nature features attributes such as the hardest and most durable materials and efficient energy production and conversion, it has become a treasure trove of knowledge for bionics, marine biology and microbiology. As a stand-alone branch of research, science can use bionics to demonstrate that nature is superior to humans in many aspects and that we still have a lot to learn from it, whether in macro or microbiology.

Bionics takes the leap from comics to research

The "Bionic Six" comic and animated television series revolved around a family who collaborated with a researcher to utilize the attributes of nature to combat those intent on destroying it. The "Bionic Six" acquired their power and speed through bionics. They knew how to take advantage of the physical forces of nature and were already advancing into the fields of marine biology and microbiology research. Today, bionics is a well-respected field of research that has little to do with children's entertainment. Bionics occupies itself with nature's "inventions" and works closely with the fields of marine biology and microbiology to transfer their attributes to the human culture. Bionics has already proved its worth in the fields of materials research and nano technology. Bionics and microbiology have also made progress in areas such as energy production and storage.

Marine biology and microbiology - two close partners

Marine biology has enjoyed new impetus over the past several years. Although researchers have long been occupied with both fields, marine biology and microbiology were thrust into the public spotlight no later than with the publication of "The Swarm", a novel by German author Frank Schätzing. Over the last year, marine biology and microbiology reports revealed that although scientists have unearthed a wealth of new discoveries in marine biology and microbiology, there remain thousands of undiscovered animal species in both areas. Microbiology is actually a vital part of marine biology since the ocean depths contain not only large animals, but also organisms that cannot be seen with the naked eye. And this is where microbiology comes into play. Marine biology and microbiology are engaged in examining the effects of currents, depths and temperatures on the development and propagation of organisms and animals. For this reason, marine biology and microbiology researchers are working to discover new animal species and organisms, all the while further expanding the depths of geography and science. When marine biology and microbiology come together with bionics, this can result in unimagined discoveries and thus the development of new methods that humans can implement for their own benefit and for the protection of the environment. The latest achievements in the fields of bionics, marine biology and microbiology can be found in innovations-report.

Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Münster University chemists create new types of Lewis acids on the basis of phosphorus

Chemists at the University of Münster have succeeded for the first time in creating three-coordinate Lewis superacids on a phosphorus basis. Previously, it had not been possible to isolate this type of compound, either in a liquid or in a solid state, due to its extreme electrophilicity and the associated reactivity. By using special substituents, the researchers were able to reduce the reactivity of the compounds, making it possible to isolate them as crystalline solids. The researchers assume that the underlying method can be transferred to other classes of compounds hitherto classified as “not viable”, thus advancing the creation of further highly electrophilic compounds.

Researchers at the University of Münster have developed a method which makes it possible to create three-coordinate Lewis superacids on the basis of...

22.10.2019 | nachricht Read more

Obesity risk quantification:a jump towards the future through the artificial intelligence lens applied to lipid science

According to WHO, nearly 1 out of 6 adults is obese. This makes obesity a prime threat to human health because it increases mortality and morbidity. In daily healthcare practice, the go-to indicator of overweight and obesity is the body mass index (BMI), a calculated relation between body weight and height. An international team of scientists led by Dresden researchers, with a joint effort between academy and industry in Saxony (Germany) introduces a revolutionary approach towards personalized and precision biomedicine.

The discovery is that artificial intelligence can assist to design markers composed of a small combination of lipids that allow to provide significantly more...

22.10.2019 | nachricht Read more

New deep-water coral discovered

Pax, Latin for 'peace' made its way into the scientific name of a new coral discovered off Pacific Panama and described in the journal Bulletin of Marine Science. According to researchers at the Smithsonian Tropical Research Institute (STRI), the Centro de Investigacion en Ciencias del Mar y Limnologia at the University of Costa Rica (CIMAR) and collaborating institutions, it alludes to the need for making peace with nature and ending the devastation of the oceans.

Psammogorgia pax, collected at a depth of 63 meters (207 feet) in Hannibal Bank --a flat-topped seamount located in Coiba National Park, a biodiversity hotspot...

22.10.2019 | nachricht Read more

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

A new imaging method invented at Indiana University leads to a discovery about how bacteria use thin hair-like surface appendages called pili for 'natural transformation'

A new study from Indiana University has revealed a previously unknown role a protein plays in helping bacteria reel in DNA in their environment -- like a...

22.10.2019 | nachricht Read more

Researchers at Münster University gain new insights into the evolution of proteins

How do bacteria manage to adapt to synthetic environmental toxins and to even develop strategies for using a pesticide as food within less than 70 years? This is what an international team of researchers now investigated. The scientists looked at an enzyme that they had isolated from bacteria that had been exposed to pesticides in the vicinity of factories producing these pesticides. Using a novel combination of methods, they found out how mutations led to biochemical changes that now enable an enzyme to cleave a pesticide. Among other things, the results could help to find new ways to break down and dispose of chemical substances. The study was published in "Nature Chemical Biology".

How do bacteria manage to adapt to synthetic environmental toxins and, for example, to even develop strategies for using a pesticide and chemical warfare agent...

22.10.2019 | nachricht Read more

Phagocytes versus killer cells - A closer look into the tumour tissue

They are first class at fighting infections. However, neutrophils, specialized phagocytic white blood cells of the immune system, can also promote the growth of cancer. A research team led by Professor Sven Brandau from the Ear, Nose and Throat Clinic of the University Hospital Essen (UK Essen) has now been able to show this for the first time in human tumour tissue. The results are published in the current issue of the renowned journal Science Immunology.

„It was already known that cancer patients that have many of these immune cells migrated into their tumour tissue have reduced survival rates”, says Sven...

21.10.2019 | nachricht Read more

How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation

Stem cells are essential for homeostasis and cell renewal in organs like skin, lung or intestine. During the course of life, their function decreases steadily, making this decline a main factor for the development of age-associated diseases. Researchers of the Leibniz Institute on Aging in Jena, Germany, and their colleagues of the Buck Institute for Research on Aging in Novato, USA, investigated the mechanisms of intestinal cell renewal in the model organism Drosophila. Their results show that the transcription factor Klumpfuss plays a key role in this process by precisely regulating the differentiation of cell types in the fly intestine.

Stem cells react to tissue damage with an increase in their proliferation rate, leading to the production of new differentiated cells. Balance between cell...

21.10.2019 | nachricht Read more

'Flamenco dancing' molecule could lead to better-protecting sunscreen

  • Molecule that protects plants from overexposure to light repurposed as a UV filter for sunscreen by University of Warwick scientists and team of collaborators
  • Disposes of harmful ultraviolet light using a superfast (100 billion twists a second) twist similar to the hand movements of flamenco dancers
  • One of a small number of molecules that could be used to protect against UVA light
  • Is eco-friendly and easy to synthesise
  • Would last far longer than many other sunscreens as it degrades 10 times slower in UVA light than the industry standard

A molecule that protects plants from overexposure to harmful sunlight thanks to its flamenco-style twist could form the basis for a new longer-lasting...

18.10.2019 | nachricht Read more

Synthetic cells make long-distance calls

Rice scientists' circuits help bacteria quickly pass signals to an entire community

The search for effective biological tools is a marathon, not a sprint, even when the distances are on the microscale. A discovery at Rice University on how...

17.10.2019 | nachricht Read more

Gene mutation in the chloride channel triggers rare high blood pressure syndrome

When the adrenal gland produces too much aldosterone, this often leads to high blood pressure and kidney damage (hyperaldosteronism). It has only recently emerged that several patients harbor a mutation in the gene for the ClC-2 chloride channel. Researchers led by Professor Thomas Jentsch have now been able to show for the first time how the altered channels cause the disease. Their results are reported in the journal Nature Communications.

The steroid hormone aldosterone, in concert with other mechanisms, controls our blood pressure. It is secreted by the adrenal glands and regulates the water...

17.10.2019 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>