Award-winning material

This is how it works: The Bremen-based scientists insert hollow glass balls measuring a maximum of 60 micrometers into the metal during casting. “If the glass balls are evenly distributed, we get a smooth surface that feels absolutely smooth – like metal. If the glass content is unevenly distributed, the material gets a distinctive new appearance, full of streaks,” says Dr. Jörg Weise of the foundry technology working group in the Shaping and Functional Materials branch of the institute. Although the material is extremely porous, it looks as smooth as metal and weighs only a fraction of the amount: As an example, the density of aluminum is reduced from 2.7 grams per cubic centimeter to only 1.2 grams per cubic centimeter, and that of zinc from seven grams per cubic centimeter to less than half, or only 3.1 grams per cubic centimeter.

“Our material can’t quite float on water yet, but we’re working on it,” Weise predicts with a wink. The aluminum composite material has a density similar to that of a polymer, but feels as high-grade as metal and has a high temperature resistance as well. Despite being so light, it can withstand pressures up to 1 000 bar – equivalent to the pressure at a depth of a thousand meters under water. Its special structure enables the light metal to absorb energy in the event of a crash. There are further benefits, too: “Because its pores are so microscopically small, the material can be plated in a similar way to a compact non-porous metal. We are currently carrying out investigations jointly with an industrial partner, HDO Druckguss- and Oberflächentechnik GmbH of Paderborn, on the possibility of chrome-plating zinc containing hollow glass balls,” Weise reports. He believes there are potential applications not only in design elements, but also in the lightweight construction industry.

Media Contact

Monika Weiner alfa

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors