European Commission earmarks €12 million for plant growth research

But we still know relatively little about the biological processes that make them grow. AGRON-OMICS is a plant research consortium that includes John Innes Centre scientists John Doonan, Mike Bevan and Sean Walsh. The goal of the 5-year initiative in collaboration with nine other top European research institutes is to understand the network of biological processes involved in leaf growth.

Plants are essential to our daily life; they provide us with food, medicine, and renewable sources of materials and energy. It’s therefore sobering to realise that, in comparison to cancer for example, we still know very little about the mechanisms involved in plant growth. Given their crucial role for mankind, it is vital that we improve our knowledge about the biology of plants.

AGRON-OMICS (Arabidopsis GROwth Network integrating OMICS technologies) will conduct an in-depth study of leaf growth in the model plant species Arabidopsis thaliana. Over the next five years, this network of major European players in plant biology will perform experiments to identify the molecular components controlling growth and build mathematical models to explain how these components interact.

The significance of the initiative caught the attention of the European Commission, which is providing €12 million toward its success. With the exception of the Arabidopsis genome initiative, this is arguably the largest grant ever awarded in this area of research, and a clear indication of the social importance of a deep understanding of life processes in plants.

Media Contact

Vicky Just alfa

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors