Yale scientists confirm how crystals form

A team of researchers at Yale University is the first to devise a way to predict the microstructure of crystals as they form in materials, according to a report in the September issue of Applied Physics Letters.


Although there are theoretical models that predict grain size and ways to monitor the growth of individual crystals, this new method makes it possible to estimate grain size and therefore the properties of materials that are dependant on microstructure.

Researchers in many fields including materials science, geology, physical chemistry and biochemistry will now be able to tailor material properties that are sensitive to microstructure.

According to senior author Ainissa G. Ramirez, assistant professor of mechanical engineering, the Yale team monitored real-time images taken at two-second intervals while they heated crystallizing samples of nickel-titanium within a transmission electron microscope.

They directly determined the rate of crystal assembly (nucleation), and the rate that the crystals grew, by measuring the number of crystals and their change in size with time. Their results agree with the conventional Johnson-Mehl-Avrami-Kolmogorov method which only gives an overall crystallization rate, with the nucleation and growth rates coupled.

The novel contribution of this work is that the nucleation and growth rates are measured independently during crystallization and can be used to infer the grain size after crystallization is complete.

“We used the mathematics of crystallization in a new way,” said Ramirez. “We found that our measured grain sizes and the mathematical predictions agreed over a broad range of temperatures. This method allows researchers to now explore the connection between structure and properties of different materials.”

Media Contact

Janet Rettig Emanuel EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors