Researchers at University of Kent investigate glass as a healing material

The University of Kent is collaborating with research teams from the University of Warwick, Imperial College London and University College London (UCL) to develop novel forms of degradable glass for a variety of medical applications, including new bone growth.


The Kent team, led by Bob Newport, Professor of Materials Physics and Director of the Functional Materials Group, has successfully steered a joint bid to the Engineering & Physical Sciences Research Council (EPSRC), which has released almost £1million in new research funding to the partnership.

The aim of the research is to investigate bioactive glasses and their possible use for a variety of medical applications. Bioactive glasses are significantly different to the glass used for the likes of TV screens or bottles; for instance, it is possible in some cases to produce a glass that will actually prompt the body to grow new bone. In all cases, the glass will dissolve safely away when in contact with body fluids such as blood plasma.

Commenting on the project, Bob Newport said: ‘The longer-term possibilities for tissue regeneration, for example, are really quite exciting – and even in the short-term these glasses offer the possibility of surgical implant materials with antibacterial properties and improved bio-compatibility. The challenge we have accepted at Kent is not only to synthesise the new materials, but also to begin to understand their make-up at the level of their constituent atoms.’

Conventionally, a glass is created by casting it in a furnace at high temperature, but there is a chemical technique to manufacture the glass at much lower temperatures from high-purity chemicals. The sol-gel process, as it is called, extends the region of glass forming, so that one can create certain chemical compositions that were previously impossible, and also create some unusual structures such as a high level of porosity. This opens up the possibility of building valuable attributes into the glass: and this is in fact the focus of the new funding. Key to the recently announced research support is the development by the Kent team of a means of using this route to make a series of bio-dissolvable glass materials able to prevent the formation of bacterial infection on surgical implants.

The newly-funded multidisciplinary partnership – involving the synthesis and advanced X-ray and neutron scattering expertise at Kent, a leading solid state Nuclear Magnetic Resonance (NMR) group at Warwick and the Division of Biomaterials and Tissue Engineering at the Eastman Dental Institute at UCL – will allow the scientists to examine the relationship between the structure and in vitro properties of this family of glasses.

In many ways this new project builds upon the long-standing Kent-Warwick research partnership in sol-gel materials, and complements their work on silicate-based bioactive glasses undertaken with the Tissue Engineering Group at Imperial College and aimed at understanding the material’s ability to promote bone regeneration.

Media Contact

alfa

More Information:

http://www.kent.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors