Merons and antimerons

A twisted bilayer of hexagonal boron-nitride. The moiré polar domains have nontrivial topology, forming a network of polar merons and antimerons.
Credit: ©Université de Liège

Researchers from the University of Liège with collaborators from University of Cambridge show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons.

Sliding and twisting of van der Waals layers can produce fascinating physical phenomena. In a recent publication in Nature Communications, Daniel Bennett, Eric Bousquet and Philippe Ghosez, from the group of Theoretical Materials Physics (Q-MAT, CESAM Research Unit) at the University of Liège (BE) , with collaborators from the University of Cambridge (UK) show that moiré polar domains in bilayer hBN give rise to a topologically non-trivial winding of the polarization field, forming networks of merons and antimerons. This research is published in Nature Communications.

Out-of-plane polarization was recently been discovered in layered systems with broken inversion symmetry such as hexagonal boron nitride and transition metal dichalcogenides such as MoS2. The polarization depends on the relative stacking between the layers, and when the layers are aligned, the out-of-plane polarization can be switched via a sliding between the layers, resulting in ferroelectricity. When there is a relative twist angle or lattice mismatch between the layers, forming a supercell known as a moiré superlattice, there is a local polarization for each different stacking, resulting in a network of moiré polar domains (MPDs). These MPDs have been experimentally shown to result in ferroelectricity, making them a promising option for nanoscale electronic applications such as information processing and memory storage.

Here it is shown that this symmetry breaking also gives rise to a previously overlooked in-plane component of polarization, and the form of the total polarization is determined purely from symmetry considerations. The in-plane component of the polarization makes the MPDs in strained and twisted bilayers topologically non-trivial. In each individual domain, the polarization completes exactly half a winding realizing a topological object known as a meron (half-skyrmion). The MPDs in strained or twisted bilayers therefore form a regular network of topological polar merons and antimerons. For strained bilayers, the polarization flows into and out of the centers of the domains (Néel type), whereas for twisted bilayers, the polarization curls around the centers of the domains (Bloch type). This means that the topological properties in these materials can be controlled by aligning the layers in different ways.

The MPDs in strained or twisted bilayers may serve as a new platform for engineering and exploring topological physics in two-dimensional layered materials.

Journal: Nature Communications
DOI: 10.1038/s41467-023-37337-8
Article Title: Polar meron-antimeron networks in strained and twisted bilayers
Article Publication Date: 24-Mar-2023

Media Contacts

Didier Moreau
University of Liege
dmoreau@uliege.be
Office: (0)4-366-5217

Julie LOUIS
University of Liège
julie.louis@uliege.be
Cell: +32 (0) 497 70 37 40

Expert Contacts

Daniel Bennett
University of Liège
dbennett@uliege.be

Philippe Ghosez
University of Liège
Philippe.Ghosez@uliege.be

Eric Bousquet
University of Liège
Eric.Bousquet@uliege.be

Media Contact

Didier Moreau
University of Liege

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors