Testing of anchorages in concrete under dynamic loading

An experimental campaign has been conducted for investigating the response of anchorages in concrete, principally to dynamic loads. Normal high performance steel fiber reinforced concretes have been considered and the best test pieces included: plain concrete specimens, cast-in-place and post installed rebars and cast-in-place and post-installed anchors. Innovative, Hopkinson bar based experiments have been produced for strain rates from 10E-6/sec up to 20/sec. The satisfactory performance with respect to concrete cone failure tensile loads of the post-installed anchors has been verified. The test results have also demonstrated that force-displacement diagrams for dynamic loading tend in general to lie above the corresponding static ones, thus indicating that additional safety margins exist in case of rapid dynamic loading.

Media Contact

G. Solomos ctm

More Information:

http://europa.eu.int

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors