Brown fat cells to lose weight

The long, non-coding RNA H19 influences the formation and function of brown fat cells. Picture: Brown adipose tissue. © Max Planck Institute for Metabolism Research

In humans and mammals, a general distinction is made between at least two different types of fat depots, white and brown fat tissue. The former is much more common in the human body, stores fat, and is preferably located in the commonly known pads on the abdomen, buttocks and thighs.

In case of increased energy demand, the body can fall back on these depots. Brown fat, on the other hand, burns energy while releasing heat, which is why babies have a lot of it. However, the number of these cells decreases steadily after the newborn age and in cases of obesity.

“Brown adipose tissue has been identified as a way of helping with weight loss because it can burn large amounts of calories,” explains Elena Schmidt, a PhD student in Jan-Wilhelm Kornfeld's research group in Cologne. 40-50 g of brown fat cells alone could burn 20% more calories. Therefore, an activation of the brown fat cells is a new way to lose weight.

A reactivation of the brown adipose tissue can be initiated by cold or medication. However, these drugs are rarely specific to the tissue or have strong side effects.

Schmidt, Kornfeld and Martin Bilban's research group at the Clinical Institute for Laboratory Medicine at the Medical University of Vienna have therefore concentrated on a previously unexplored aspect of brown fat cells. Long, non-coding RNAs (LncRNAs) have only recently been discovered and are very tissue-specific in the cells, which means that they have great potential as candidates for therapeutic approaches.

They found a LncRNA, H19, which plays an important role in the formation and function of brown fat cells. The scientists were able to show in mice that a high activity of H19 protected the animals from weight gain. “We were surprised to see that the animals with high H19 activity, even under a high-fat diet, hardly gained any more weight than their healthy mates,” reports Bilban.

In addition, the researchers discovered another special feature. H19 controls a very rare class of genes that, unlike most genes in humans and mice, are inherited from only one parent (i.e. either the mother or the father).

“One result of our research was that we observed that paternal genes tend to lead to obesity, while their maternal opponents ensure that the offspring remain slim,” Kornfeld explains, adding: “We believe that we found a fundamental mechanism in which genes of the father and mother carry out a kind of tug-of-war in the genome of the offspring. Our work has only just begun here!”

Dr. Jan-Wilhelm Kornfeld
Max Planck Institute for Metabolism Research
phone: +49(0)221 4726 226
E-Mail: jan-wilhelm.kornfeld@sf.mpg.de

Schmidt E, Dhaouadi I, Gaziano I, Oliverio M, Klemm P, Awazawa M, Mitterer G, Fernandez-Rebollo E, Pradas-Juni M, Wagner W, Hammerschmidt P, Loureiro R, Kiefer C, Hansmeier NR, Khani S, Bergami M, Heine M, Ntini E, Frommolt P, Zentis P, Ørom UA, Heeren J, Blüher M, Bilban M, Kornfeld JW. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nature Communications, 2018.

Media Contact

Dr. Annegret Burkert Max-Planck-Institut für Stoffwechselforschung

More Information:

http://www.sf.mpg.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors