New evidence for Solar-like planetary system around nearby star

Astronomers at the Particle Physics and Astronomy Research Councils UK Astronomy Technology Centre (ATC) at the Royal Observatory, Edinburgh have produced compelling new evidence that Vega, one of the brightest stars in the sky, has a planetary system around it which is more like our own Solar System than any other so far discovered.

All of the hundred or so planets that have been discovered around other stars have been very large gaseous (Jupiter-like) planets orbiting close to their star. This is very unlike our own Solar System. New computer modelling techniques have shown that observations of the structure of a faint dust disk around Vega can be best explained by a Neptune-like planet orbiting at a similar distance to Neptune in our own solar system and having similar mass. The wide orbit of the Neptune-like planet means that there is plenty of room inside it for small rocky planets similar to the Earth – the Holy Grail for astronomers wanting to know whether we are alone in the Universe.

The modelling, which is described today (1 December 2003) in The Astrophysical Journal, is based on observations taken with the world’s most sensitive submillimetre camera, SCUBA. The camera, built at the ATC, is operated on the James Clerk Maxwell Telescope in Hawaii. The SCUBA image shows a disk of very cold dust (-180 degrees centigrade) in orbit around the star.

“The irregular shape of the disk is the clue that it is likely to contain planets” explains astronomer Mark Wyatt, the author of the paper. “Although we can’t directly observe the planets, they have created clumps in the disk of dust around the star.”

The modelling suggests that the Neptune-like planet actually formed much closer to the star than its current position. As it moved out to its current wide orbit over about 56 million years, many comets were swept out with it, causing the dust disk to be clumpy.

“Exactly the same process is thought to have happened in our Solar System”, said Wyatt, “Neptune was ‘pushed’ away from the Sun because of the presence of Jupiter orbiting inside it”. So it appears that as well as having a Neptune-like planet, Vega may also have a more massive Jupiter-like planet in a smaller orbit.

The model can be tested in two ways as Wayne Holland, who made the original observations, explains “The model predicts that the clumps in the disk will rotate around the star once every three hundred years. If we take more observations after a gap of a few years we should see the movement of the clumps. Also the model predicts the finer detail of the disk’s clumpiness which can be confirmed using the next generation of telescopes and cameras.”

Paradoxically the star barely appears in the SCUBA image because it is far too hot to be seen with this kind of detector. Vega is, however, easily seen with the naked eye. It is the third brightest star visible from Northern latitudes and is bluish-white in colour. Tonight you can see it in the west at around 7pm.

Media Contact

Julia Maddock alfa

More Information:

http://www.pparc.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors