New growth-stimulating cue identified for nerve cells

Bathed in nutrients, but in the absence of any particular cue, axons will extend from cortex nerve cells in all directions (top image). Toss in a growth stimulator like semaphorin-7a, and axon growth is heavier nearest the cue (bottom image). Credit: Johns Hopkins Medical Institutions, Nature. <br>

For decades, scientists have hunted for signals that guide nerve cells’ tentacle-like axons, hoping to understand how these cell tips reach out to distant targets. It’s knowledge that might one day help researchers learn how to rebuild nerves lost to spinal cord injuries or diseases like Huntington’s.

Now, a Johns Hopkins team studying a family of proteins best known for repelling axons and inhibiting their growth reports finding one member that unexpectedly promotes axon growth instead. In their experiments, rat nerves in the lab grew more and longer axons on the side nearest a source of this protein, called semaphorin-7a. Moreover, in mice without semaphorin-7a, axons of some odor-sensing nerve cells never reached their targets, the scientists report in the July 24 issue of Nature.

“I’ve been studying semaphorins for about a decade and didn’t expect to find any that stimulated axon growth, certainly not to the extent we saw in the lab and in mice,” says Alex Kolodkin, Ph.D., professor of neuroscience in The Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences. “Now we need to figure out how semaphorins balance their repulsive and attractive effects.”

Part of the answer to this paradox, Kolodkin says, is that semaphorin-7a interacts with different proteins than its relatives. In experiments with rat nerve cells involved in sensing odors, first author and postdoctoral fellow Jeroen Pasterkamp, Ph.D., found that semaphorin-7a spurs axon growth by hooking onto proteins called integrins, which are found on nerves and many other cell types.

Among their many roles, integrins (pronounced IN-teh-grins) help control cells’ interactions with their surroundings by capturing chemical signals and conveying the messages to cells’ internal machinery. Even though this is the first report to link semaphorins and integrins, both protein families are rapidly being recognized as major contributors to neurological function and disease, says Kolodkin.

“Because integrins are important throughout the body, targeting them to stimulate axon growth or re-growth in a particular area of the brain or spinal cord presents many problems,” notes Pasterkamp. “Our next steps are to find out exactly how semaphorin-7a’s message is passed along inside the nerve, which will hopefully reveal a useful, specific target for promoting axon growth following nerve injury or degeneration.”

As the researchers learn more of the specifics about how semaphorin-7a differs from its relatives, they also hope to redraw their picture of how semaphorins as a family affect nerve development throughout life, they say.

Media Contact

Joanna Downer EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors