Ultra-wet Gas Turbine

We offer a method to improve the passive scalar homogenization of mixing fluidic jets in cross flow configurations especially within the combustion chamber of a turbine. This is achieved by using fluidic oscillators that create an oscillating or pulsating fluid flow at the oscillator exit due to their way of construction. By this improved method high amounts of steam can be added to the combustion process and thus significantly increase the level of efficiency.<<br><br>The oscillation frequency of the injected fuel is thereby regulated only by the mass feed of the supplied fluid.<br>

The combination of cross flow injection and oscillation/pulsation of the fluid flow increases primarily the mixing ration of the two fluid flows within a combustion chamber (fluid & air) and moreover leads to a more effective burning. <br> The fluidic actuators can be installed within new (gas) turbines but can also be integrated in already existing ones.<br> <br> <strong>Benefits</strong><br> <ul> <li>Better temporal homogenization: NOx reduction, improved fuel value</li> <li>Pressure loss in turbine is reduced: enhancing performance rate</li> <li>Decrease of mixing length by ca. 50%: turbines could be build smaller</li> <li>Fluidic oscillators require less maintenance</li> <li>Usage of nearly any gaseous fuels</li> <li>Increased macro- and micromixing phenomena: higher gains in mixing quality</li> </ul> <strong>IP Rights</strong><br> PCT application filed<br> <br> <strong>Patent Owner</strong><br> Technische Universität Berlin</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors