Thin cells for solar energy

A new type of very thin solar cell made from inexpensive materials has been invented by researchers at the Hahn Meitner Institute in Berlin, Germany, in collaboration with a colleague now at Portland State University, Oregon, USA. The new device will be much cheaper to make because it uses less expensive semiconductor materials than conventional solar cells. The researchers publish details of their invention in the Institute of Physics journal Semiconductor Science & Technology on 14 April 2003.

German physicists Rolf Koenenkamp, now at Portland State University, and former colleagues Katja Ernst and Abdelhak Belaidi have used a layer of titanium dioxide that is full of tiny pores to make a much more efficient device for harvesting the sun’s energy.

They formed an extremely thin layer of the light-sensitive cadmium telluride (CdTe) which forms the material for the solar cell on top of the porous titanium dioxide, which was itself supported on a sheet of glass. They connected electrical contacts to the back of this sandwich. When sunlight hits the cadmium telluride layer, the energy is converted into an electrical current which is tapped off via the electrical contacts. Any stray light bounces around inside the tiny pores in the titanium dioxide layer and is scattered back into the cadmium telluride layer, making the device more efficient. This boosts efficiency by a factor of fifty over a similar cell based on a non-porous support material.

The prototype solar cell produces a voltage of 0.67 V and a current of 8.9 milliamps per square centimetre when illuminated with just 100 milliwatts per square centimetre of light typical for a sunny day. The researchers also found that if they alloyed the CdTe with mercury they could boost the current to 15 milliamps. “Solar cells typically produce between 0.5 and 1 V voltage,” explains Koenenkamp, “In applications, several cells are connected in series to provide higher voltage as needed.”

There are a few wrinkles yet to be smoothed out in the prototype solar cell, but its properties offer the promise of renewable energy at much lower cost than current solid state devices. While the present device still uses hazardous or expensive materials, such as gold, cadmium and mercury in small amounts, the simple design principle could be used for other cell types, such as silicon and compound solar cells, says Koenenkamp.

Media Contact

Dianne Stilwell alfa

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors