Researchers uncover neural origins of expert intuition

What makes experts different from the rest of us? Over the past century, this question has prompted a range of studies on various aspects of human cognition, revealing clues about the psychological and neurological origins of intelligence, perception and memory. While board games such has chess have provided the most productive setting for such studies, the neural mechanisms underlying cognitive expertise in board game play nonetheless remain poorly understood.

To clarify these mechanisms, the researchers used fMRI to study the brain activity of professional and amateur players of shogi, a Japanese board game. Unlike amateurs, professional shogi players are able to quickly perceive board patterns and generate moves without conscious thought, a unique intuitive capacity which grants them their superior skill. Imaging studies have identified processes specific to the brains of chess experts, but no research has yet clarified the neural substrates for expert intuition.

Using spot games of shogi, the researchers have now pinpointed for the first time two brain regions involved in specific aspects of such intuition. Activity in the precuneus of the parietal lobe, a brain region responsible for integrating sensory information, was observed when professional players perceived and recognized realistic board patterns. Rapid generation of next-moves, in contrast, was identified with activity in the caudate nucleus of the basal ganglia. Among professional players, the results moreover highlight a strong correlation between these regions during next-move generation, suggesting that the precuneus-caudate circuit in their brains has been honed to this specific task.

By shedding first-ever light on the elusive origins of expert intuition, these findings establish a crucial link between brain science and cognitive psychology research, opening the door to fundamental insights on brain function and applications in the design of new types of expert systems.

For more information, please contact:

Dr. Keiji Tanaka
Cognitive Brain Mapping Laboratory
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9342 / Fax: +81-(0)48-467-7100
Brain Science Research Planning Section
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9757 / Fax: +81-(0)48-467-4914
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho(at)riken.jp

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors