Can engineered bugs help generate biofuels? Study holds promise

The versatile organism Lactococcus lactis, the workhorse bacterium that helps turn milk into cheese, may also be valuable in the understanding of how microbes turn the organic compound cellulose into biofuels.

New research from Concordia University, published in the journal Microbial Cell Factories, suggests the bacterium can be engineered to transform plant material into biofuels or other chemicals.

Concordia biology professor Vincent Martin and his PhD student Andrew Wieczorek demonstrated how structural or scaffolding proteins on the surface of the bacteria can be engineered in Lactococcus lactis towards the breakdown of plant material.

They showed how these scaffold proteins were successful in providing a stable surface outside the cell for chemical activity, e.g. the transformation of plant material into biofuels.

“This is the first study to show how the scaffolding proteins, can be secreted and localized to the cell surface of Lactococcus,” says Dr. Martin, who is also Canada Research Chair in Microbial Genomics and Engineering.

“Exporting these proteins and localizing them to the outside of the cell is a huge milestone. This can enhance the efficiency of any bioprocesses or the breakdown of organic materials.”

What's promising about this research, stresses Professor Martin, is how the scaffolding proteins of Lactococcus lactis appear to bond with multiple compounds. “Our next step will be to engineer larger more complex scaffolds that can encourage other bio-processes that can eventually enhance the yield of fuels in a manner that is commercially viable.”

Partners in research:

This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

About the study:

“Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis,” published in Microbial Cell Factories, was authored by Andrew S. Wieczorek and Vincent JJ Martin of Concordia University.

Related links:

Cited Microbial Cell Factories study: http://www.microbialcellfactories.com/content/9/1/69
Concordia University: www.concordia.ca
Concordia Department of Biology: http://clone.concordia.ca/bioweb
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Twitter: http://twitter.com/concordianews

Media Contact

Sylvain-Jacques Desjardins EurekAlert!

More Information:

http://www.concordia.ca

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Hubble Views the Dawn of a Sun-like Star

Looking like a glittering cosmic geode, a trio of dazzling stars blaze from the hollowed-out cavity of a reflection nebula in this new image from NASA’s Hubble Space Telescope. The…

Engineering a new color palette for single-molecule imaging

A new paper published in Nature Nanotechnology outlines a way to create dozens of new “colors” to multiplex single-molecule measurements. Researchers often study biomolecules such as proteins or amino acids…

Using solar energy to generate heat at high temperatures

The production of cement, metals and many chemical commodities requires extremely high temperatures of over a thousand degrees Celsius. At present, this heat is usually obtained by combusting fossil fuels:…

Partners & Sponsors