Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is process technology?

Process technology is when a product is manufactured from a raw material by using chemical, biological or physical processes.

Process technology can be viewed as the time between the production of a raw material and the manufacture of a product. The number of processes that are involved plays no role here. A good example is the manufacture of various metals from iron ore. Or petroleum, which has to be processed so that various end products can be manufactured using process technology. Process technology uses processes to modify more than just raw materials. This can include recyclable materials for instance. Especially in today's "green environment",process technology is utilized to process renewable raw materials , or bioenergy as it's called. This can involve different grains and other raw materials such as rape seed, from which bioenergy can be produced through various processes.

There is more than one process technology

Process technology is not limited to a single process. It can be classified into five different process technologies, all of which involve their own process. First, there is thermal process technology , which deals with distillation. In contrast to thermal process technology, chemical process technology relies on chemical processes such as hydrolysis. Electrochemical process technology utilizes electrochemical processes such as the synthesis of various chemicals. Process technologies based solely on biological processes focus more on the use of bacteria, fungi or yeast.

Every process technology brings advantages and disadvantages. For this reason, the process technology must be selected on a case by case basis. Companies frequently utilize various process technologies to achieve the optimum result.

Hydrolysis in chemicals and industry

Hydrolysis uses a chemical process to split water into hydrogen and oxygen. Hydrolysis also involves the chemical separation of crystallization water. The opposite of hydrolysis is dehydration synthesis, which as the term implies involves the splitting of hydrogen instead of water.

How does hydrolysis work?

The application of phosphoric or sulfuric acid as catalysts in hydrolysis causes alcohols to react for instance. The water then separates from the alcohol through the hydrolysis process. Hydrolysis can also be induced by using zinc chloride. Viewed on a large-scale, hydrolysis can also be activated at a specific pressure, which triggers the hydrolysis during the vapor phase. Alcohols frequently react with one another during hydrolysis. This hydrolysis process creates one molecule from two molecules of ethanol alcohol during the vapor phase at a temperature of 260°C. All of this can be triggered through hydrolysis.

What else can be produced through hydrolysis?

### invalid font number 31506 In addition to acetic anhydride, which is produced by hydrolyzing acetic acid, hydrolysis is also used to produce phthalicanhydride from phthalic acid. These processes should be carried out only by trained chemists and physicists. Some processes are extremely complex and can trigger various side effects if carried out improperly. If the human body is exposed to excessive levels of acid during a process, it can result in damage to the respiratory tract.

Hydrolysis and process technology work hand in hand. A wide range of industries rely on hydrolysis for producing a variety of materials, which makes hydrolysis ideally suited for manufacturing processes.

Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

New process for cell transfection in high-throughput screening

So far, the established methods for an efficient and cell-preserving transfection in high-throughput screening lead to unsatisfactory results. Within the scope of a project of the Industrial Joint Research (IFG), the Laser Zentrum Hannover e.V. (LZH) and its partners succeeded in developing a functional model for a gold nanoparticle-based laser transfection in high-throughput.

This transfection method is characterized by molecules entering the cells through an optically induced process. By attaching the gold nanoparticles to the...

21.03.2016 | nachricht Read more

Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant

Zero plastics to landfill increases the need to mechanical recycling of plastics. This also applies to flame retardant plastics which are increasingly formulated with halogen-free flame retardants. According to EU regulations, plastic waste recycling is to increase in quality, and recycling rates should continue to rise: the EU target for 2020 is 70 percent.

The Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt/Germany has therefore launched a new research project on the...

17.02.2016 | nachricht Read more

CT-Automat: Fully automatic serial testing of materials and components

For many years, Fraunhofer IZFP’s CT-Automat, a system for computed tomography (CT), has proven to be a fully automated laboratory system for industrial quality control. Several leading European seed companies are using it as an effective tool for control and quality assessment in seed production for fast obtainment of objective quality statements concerning single seeds. This nondestructive inspection procedure evaluates the quality of the seed without damaging the seed itself and without altering the surface.

The CT Automat is used by Europe's leading seed producers to minimize seed rejects especially in case of sugar beet seeds to ensure at same time high-quality...

16.02.2016 | nachricht Read more

Small parts make the difference

Call for partners: high coating-rate vacuum deposition for small parts in big volumes

Bulk goods? – yes, numerous small parts in industrial manufacturing are produced and processed in such large quantities that we speak of them as bulk goods....

12.01.2016 | nachricht Read more

Nanopores could take the salt out of seawater

University of Illinois engineers have found an energy-efficient material for removing salt from seawater that could provide a rebuttal to poet Samuel Taylor Coleridge's lament, "Water, water, every where, nor any drop to drink."

The material, a nanometer-thick sheet of molybdenum disulfide (MoS2) riddled with tiny holes called nanopores, is specially designed to let high volumes of...

12.11.2015 | nachricht Read more

Coking of fluid fuels - New procedure shall analyze and avoid reasons

In heating appliances, diesel engines and other technical systems driven by fluid fuels and lubricants, combustion can lead to growing undesirable deposits (coking), which may affect the functionality of the system. Deposits arise during the evaporation of fuels on hot surfaces. The detailed processes are unclear. Within a common research project, the chair for Analytical Chemistry of the University Rostock and the Oel-Waerme-Institut (OWI) want to get to the bottom of the reasons for deposit formation in modern combustion systems.

Deposits arise during the evaporation of fuels on hot surfaces. The detailed processes are unclear. Within a common research project, the chair for Analytical...

06.11.2015 | nachricht Read more

LIMBO: Innovative joining technology for temperature-sensitive components

This November, the Experts of the Fraunhofer Institute for Laser Technology ILT will be presentinga pioneering novelty at productronica 2015, the world's leading trade fair for electronics development and production.They are focusing on a totally new laser-based joining technique that will provide plenty of momentum to the electronics production industry.

The five letters stand for a development from Aachen that is meant to inspire specialists from the electronics manufacturing sector: they are talking about...

04.11.2015 | nachricht Read more

Using optical fiber to generate a two-micron laser

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method

In recent years, two-micron lasers (0.002 millimetre) have been of growing interest among researchers. In the areas of surgery and molecule detection, for...

09.10.2015 | nachricht Read more

Water pathways make fuel cells more efficient

Researchers from the Paul Scherrer Institute (PSI) have developed a coating technique in the laboratory that could raise the efficiency of fuel cells. The PSI scientists have already applied to patent the technique, which is suitable for mass production.

Researchers from the Paul Scherrer Institute (PSI) have developed a coating technique in the laboratory that could raise the efficiency of fuel cells. Fuel...

24.09.2015 | nachricht Read more

Infrared heat helps to get a good grip

Did you know that Infrared makes the handle of watering cans more comfortable?

Steering wheels, watering cans and handles shall have a good grip. On no account must they have sharp edges. However, sharp burrs cannot always be avoided when...

22.09.2015 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>