One electron makes all the difference

Since their discovery in 1991, carbon nanotubes have continually fascinated physicists and chemists with their amazing electronic and mechanical properties.

These cylindrical molecules with a radius of a few Angstroms (1×10-10 meters) and with lengths of up to several micrometers (1×10-6 meters) have endless applications inside different scientific fields from nanoelectronics to material science, and are used by scientists to study a wide range of physical phenomena that only take place at a nanometric scale.

The combination of nanotubes and other materials form hybrid structures and these are of particular interest. For example, carbon nanotubes connected to superconductive electrodes (materials that offer no electrical resistance at low temperatures) are currently being used to study exotic physical phenomena like the Josephson Effect. This Nobel Prize winning discovery made by physicist Brian D. Josephson in 1973 consists of the almost magic effect of producing an electrical current in a superconductive junction without the application of a voltage.

In the last two three years several research groups have demonstrated that in a carbon nanotube held in between superconducting electrodes, the Josephson effect can be controlled at will, making possible a superconductive version of a transistor. This discovery has endless possibilities, most of which have barely started to be investigated.

A research group from the UAM working in collaboration with a research team lead by Christian Schoenenberger of Basilea University, has recently published an article in the Physical Review Letters, where a new phenomenon that takes place within these nanotube-superconductor structures has been described.

Demonstrating that carbon nanotubes truly are an endless supply of new physical phenomena, they have discovered that when a voltage is applied to these hybrid structures, the electric current that flows depends greatly on the number of electrons that are present at the nanotube, and furthermore, whether this number is even or odd has a drastic impact. This new transport phenomenon is caused by subtle interactions between the Spins (magnetic field produced by the electrons as they rotate) of the electrons in the carbon nanotubes – a characteristic which depends on their number and the conducting electrons in the superconductor.

Media Contact

Oficina de Cultura Científica alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors