Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations from the fields of bionics, marine biology and microbiology

Understanding nature and transferring its traits to technology is not only the objective of bionics, but also of marine biology and microbiology.

Bionics, marine biology or microbiology. Here you can find scientific reports and articles about achievements and developments in the fields of bionics, marine biology and microbiology. Technical research departments at many universities and institutes are examining and learning from nature and then collaborating with the fields of bionics, marine biology and microbiology. Although Arnold Gehlen once labeled humanity as a "flawed being" that had to create its own culture to survive nature's environment, we can be certain he had not yet considered the opportunities presented by bionics, marine biology and microbiology. Science is meanwhile using the traits of the flawed being to contemplate how to utilize bionics, marine biology and microbiology to copy animals, plants and the rest of the environment. Because nature features attributes such as the hardest and most durable materials and efficient energy production and conversion, it has become a treasure trove of knowledge for bionics, marine biology and microbiology. As a stand-alone branch of research, science can use bionics to demonstrate that nature is superior to humans in many aspects and that we still have a lot to learn from it, whether in macro or microbiology.

Bionics takes the leap from comics to research

The "Bionic Six" comic and animated television series revolved around a family who collaborated with a researcher to utilize the attributes of nature to combat those intent on destroying it. The "Bionic Six" acquired their power and speed through bionics. They knew how to take advantage of the physical forces of nature and were already advancing into the fields of marine biology and microbiology research. Today, bionics is a well-respected field of research that has little to do with children's entertainment. Bionics occupies itself with nature's "inventions" and works closely with the fields of marine biology and microbiology to transfer their attributes to the human culture. Bionics has already proved its worth in the fields of materials research and nano technology. Bionics and microbiology have also made progress in areas such as energy production and storage.

Marine biology and microbiology - two close partners

Marine biology has enjoyed new impetus over the past several years. Although researchers have long been occupied with both fields, marine biology and microbiology were thrust into the public spotlight no later than with the publication of "The Swarm", a novel by German author Frank Schätzing. Over the last year, marine biology and microbiology reports revealed that although scientists have unearthed a wealth of new discoveries in marine biology and microbiology, there remain thousands of undiscovered animal species in both areas. Microbiology is actually a vital part of marine biology since the ocean depths contain not only large animals, but also organisms that cannot be seen with the naked eye. And this is where microbiology comes into play. Marine biology and microbiology are engaged in examining the effects of currents, depths and temperatures on the development and propagation of organisms and animals. For this reason, marine biology and microbiology researchers are working to discover new animal species and organisms, all the while further expanding the depths of geography and science. When marine biology and microbiology come together with bionics, this can result in unimagined discoveries and thus the development of new methods that humans can implement for their own benefit and for the protection of the environment. The latest achievements in the fields of bionics, marine biology and microbiology can be found in innovations-report.

Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Start codons in DNA may be more numerous than previously thought

For decades, scientists working with genetic material have labored with a few basic rules in mind. To start, DNA is transcribed into messenger RNA (mRNA), and mRNA is translated into proteins, which are essential for almost all biological functions. The central principle regarding that translation has long held that only a small number of three-letter sequences in mRNA, known as start codons, could trigger the production of proteins. But researchers might need to revisit and possibly rewrite this rule, after recent measurements from a team including scientists from the National Institute of Standards and Technology (NIST).

For decades, scientists working with genetic material have labored with a few basic rules in mind. To start, DNA is transcribed into messenger RNA (mRNA), and...

21.02.2017 | nachricht Read more

An alternative to opioids? Compound from marine snail is potent pain reliever

A tiny snail may offer an alternative to opioids for pain relief. Scientists at the University of Utah have found a compound that blocks pain by targeting a pathway not associated with opioids. Research in rodents indicates that the benefits continue long after the compound have cleared the body. The findings were reported online in the February 20 issue of the Proceedings of the National Academy of Sciences.

A tiny snail may offer an alternative to opioids for pain relief. Scientists at the University of Utah have found a compound that blocks pain by targeting a...

21.02.2017 | nachricht Read more

Warming ponds could accelerate climate change

Rising temperatures could accelerate climate change by reducing the amount of carbon dioxide stored in ponds and increasing the methane they release, new research shows.

Rising temperatures could accelerate climate change by reducing the amount of carbon dioxide stored in ponds and increasing the methane they release, new...

21.02.2017 | nachricht Read more

A novel socio-ecological approach helps identifying suitable wolf habitats

About one third of the Swiss landscape offers suitable wolf habitat. Nonetheless, there is only a small fraction thereof where the wolf is tolerated by local communities. Those regions – characterized by both favourable environmental conditions and a positive attitude towards the wolf – are identified as candidate regions for the successful short to medium-term wolf expansion, according to a study conducted at the Department of Evolutionary Biology and Environmental Studies of the University of Zurich

The wolf was eradicated in Switzerland and from large parts of continental Europe including France and Germany by the end of the 19th century. Following legal...

17.02.2017 | nachricht Read more

Desert ants: Same behavior outdoors and in the lab

A spherical treadmill allows biologists to investigate how desert ants find their way in a featureless environment

These desert ants live in salt pans and are ideal models for navigation research. When they set out in search of food in their flat, bare, hostile environment,...

16.02.2017 | nachricht Read more

Rare blood disease improves the defence against germs

Researchers of the HZI and of the University of Magdeburg find increased immune reaction associated with a rare bone marrow disease

Patients afflicted by myeloproliferative neoplasia – a group of chronic malignant bone marrow diseases – bear a mutation in their haematopoietic stem cells....

16.02.2017 | nachricht Read more

New, ultra-flexible probes form reliable, scar-free integration with the brain

Engineering researchers at The University of Texas at Austin have designed ultra-flexible, nanoelectronic thread (NET) brain probes that can achieve more...

16.02.2017 | nachricht Read more

Ötzi the Iceman: Researchers validate the stability of genetic markers

Biomarkers are biological attributes that can give doctors or researchers clues about the health status or illnesses of a patient. Scientists are placing great hope in a new type of biomarker, so-called microRNAs. These short ribonucleic acid molecules are notable for their very high level of stability. Researchers at Saarland University, the University of Luxembourg and the Eurac Research center in Bozen have now established that such microRNAs can remain stable even after 5300 years. They have found the molecules in the well-known glacier mummy "Ötzi".

Biomarkers are biological attributes that can give doctors or researchers clues about the health status or illnesses of a patient. Scientists are placing great...

16.02.2017 | nachricht Read more

Molecular patterns of complex diseases

The Helmholtz Zentrum München has published results of the largest genome-wide association study on proteomics to date. An international team of scientists reports 539 associations between protein levels and genetic variants in ‘Nature Communications’. These associations overlap with risk genes for 42 complex diseases.

The Helmholtz Zentrum München has published results of the largest genome-wide association study on proteomics to date. An international team of scientists...

16.02.2017 | nachricht Read more

How do cells move? Researchers in Münster investigate their mechanical features

Using an optical method, researchers at the Cells-in-Motion Cluster of Excellence have investigated the mechanical features of cells in living zebrafish embryos and manipulated, for the first time, several components in the cells simultaneously. The study appears in the Journal of Biophotonics.

Using an optical method, researchers at the Cells-in-Motion Cluster of Excellence have investigated the mechanical features of cells in living zebrafish...

15.02.2017 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>