Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Videos Controlled by Eye Movement – New Generation of Microdisplays

24.03.2015

Diving into a new virtual world and taking part in films by eye control – all this might be possible with a new SVGA-OLED microdisplay. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been working for a long time on the development of OLED microdisplays combining display and camera functions. The latest work will be presented by scientists at the Hannover Messe (13th – 17th April 2015, booth of TU Dresden – CFAED, hall 2, booth A38).

The world of the so-called wearables is colorful and versatile: Wrist band measuring the pulse, buttons, which indicate the receipt of e-mails with color change or glasses providing information about the environment.


Bidirectional microdisplay

Fraunhofer FEP

Already in 2012, Fraunhofer FEP presented a pair of glasses which enables a normal perception of the environment and, at the same time, offers the possibility to get digital information projected directly into the user’s field of view, which can even be controlled by eye movement.

Thus, for example a technician is able to read a manual while working and scroll pages with his/her eyes without interrupting activities. This is possible with a so-called bidirectional OLED microdisplay, which is a display element that includes an embedded image sensor. The sensor can record the user’s eye movement with this integrated camera and thus enables an interaction with the displayed information.

A full-color OLED microdisplay has now been developed by the scientist where the display as well as the integrated camera functions have SVGA resolution (800 × 600 × RGBW).

Bernd Richter, Head of Department “IC and System Design”, where the new display has been developed, describes the new features: “The new generation of bidirectional microdisplays represents a quantum leap in many ways. All essential key parameters of the chip could be improved significantly.

This includes an increased resolution of the display and the image sensor as well as an enhanced color depth and the integration of further important components directly into the microdisplay chip. Following this the microdisplay can be operated with significantly fewer external components and thus contributes to further development of miniaturized and efficient systems.”

To ease customers the entry in these new technology the scientists offer development kits in various configurations. The new microdisplay can be transferred directly into product-specific applications. Moreover, fast and cost-efficient customer-specific adaptations and further developments towards innovative microdisplays are possible, which are based on an efficient design methodology of the Si-CMOS backplane circuit.

A part of the work was financed by the Federal Ministry of Education and Research (BMBF) (project ISEMO, funding code: 16SV3682) and by the Fraunhofer-Gesellschaft.

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/YmT

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Fraunhofer HHI presents interaction components for contactless human-machine operation
20.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>