Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transparent color tunable OLED


The project LOIGB (LED and OLED integration into glass and plastic composites for the use in lighting systems for railway and further applications) has been successfully completed. The results will be presented at LOPEC 2015 (March 4th – 5th, 2015, Munich, hall B0, booth 230).

The objective of the joint project was the development and integration of large-area color variable OLED modules, whereby the light colors red, green and blue (RGB), which are required for the achievement of white mixed light, can be controlled separately.

2-color variable transparent OLED module with activated blue, blue and yellow as well as yellow unit

© Fraunhofer FEP | Picture in printable resolution:

Thus it is possible to generate any desired color, including white, with one and the same OLED module. The realization of large-area 3-color-variable OLED modules could be demonstrated in the project.

The OLED modules have a diameter of 55 mm with an active light area of 42 mm. They were encapsulated with a full thin film, which enables the lamination of OLED modules in glass composites.

For the first time worldwide a transparent 2-color variable OLED, which can show a color gradient from blue to white to yellow, will be demonstrated. This exhibit will be presented to the visitors of LOPEC 2015 at the Fraunhofer FEP booth.

A possible field of application could be its use as the light source in a laminated glass sheet which serves as baggage compartment in trains. The company SBF Spezialleuchten GmbH, the coordinator of the project, is working on such solutions.

“The possibilities for application of the results, which are achieved within the project, are extraordinarily versatile”, says project manager Jan Hesse. “In addition to the use in general lighting, e.g. in windows, wall elements or wallpapers, the color variable OLEDs are as well suitable for the interior vehicle lighting – especially for the ambient or accent lighting – in the automotive and rail vehicle industry.”

Besides, the aviation industry shows great interest in using this technology for ambient lighting within an aircraft cabin.

The results which were achieved in the project LOIGB provide a basis for further activities at Fraunhofer FEP. Currently, the scientists are working on the process development in order to achieve higher yield and reduce manufacturing costs as well as to realize the process transfer to a roll-to-roll system for flexible OLED. Moreover, the intuitive control of such lighting elements will become a priority. Compared to conventional light sources (on / off), the complex functionality (dimmability, color variation and dynamization through segments) requires new intuitive control possibilities. A simple control is absolutely necessary in order to achieve market acceptance for that innovative lighting technology.

The visitors of LOPEC 2015 are invited to inform themselves about recent developments of our institute in the field of organic semiconductors through the following lectures and poster:

• Dr. Olaf Hild:
"Development of OLED-microdisplay with µ-structured R,G,B subpixels",
Session Devices I: OLED; March 4th 2015, 11.50 a.m.

• Susan Mühl:
"Adjustable nanowire anisotropy of slot die coated anode layers and its influence to OLED performance"; March 4th 2015, 03.00 p.m.

• Claudia Keibler:
"ALD-film: flexibility versus barrier function"
Poster session on March 4th 2015, 06.00 – 08.00 p.m.

The project was funded by the European Union and the Free State of Saxony.
Funding reference: 100133280

Press contact:

Annett Arnold
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP| Phone +49 351 2586 452 |
Winterbergstraße 28 | 01277 Dresden | Germany |

Weitere Informationen:

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>