Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The energy-saving data glasses

04.11.2016

Data glasses mirror information to the eye without interfering with the wearer‘s vision. However, the battery runs down quickly, because the electronics consume a great amount of electricity while playing back the images. Fraunhofer researchers have developed an energy-saving display that reduces the power consumption to a fraction. The new display will be presented at the electronica trade fair in Munich from November 08-11, 2016.

Via a small display, data glasses present the eye with information or images which are received using a radio link from the frame of the glasses. The big advantage: With the data glasses, the wearer’s hands are free – in contrast, a smartphone has to be held in the hand.


Fraunhofer researchers have developed an energy-saving display that reduces the power consumption to a fraction

© Fraunhofer FEP, Photographer: Anna Schroll

This may be interesting for mechanics. They can look at assembly instructions and construction plans via the data glasses while keeping their hands on the tools. Data glasses are becoming increasingly attractive for athletes, as well. Mountain bikers, for example, can follow the projected navigation arrows as they travel cross country. The cyclists can keep their hands on their handlebars, while the smartphone with the GPS remains in the pocket.

Despite such benefits, data glasses have not really made a breakthrough yet. The problem: The displays use up a lot of battery power because the video images process lots of data. In most cases, the battery is out of juice after an hour. What’s more, the microprocessors get hot very quickly. The frame of the glasses warms up, which is unpleasant on the sensitive area around the temple.

Engineers from the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP in Dresden have developed a particularly energy-saving display that is also very bright. The scientists have many years of experience in the design and manufacture of displays with organic light emitting diodes (OLED). These are based on electrically conducting organic semiconductors that emit very bright light while energized.

The OLEDs are applied to a silicon semiconductor which controls the individual pixels. The Fraunhofer FEP has integrated a camera function into the chip. As a result, the OLED microdisplays not only emit light, but also perceive the surroundings. There is also a small light-sensitive photodiode located in each pixel. The camera function, for example, is important in order to determine the direction in which the wearer looks. However, these displays have the same problem as all other displays of data glasses – high energy consumption.

Reduced data stream

In order to avoid the flickering of a moving video image, many successive images have to be played in one second, like with a flipbook – in the case of the video display, this amounts to 60 images. The control electronics and the chip therefore have to process large amounts of data in a split second. That eats up a lot of electricity. Moreover, the chip and the control electronics heat up. Project manager Philipp Wartenberg and his colleagues at the FEP have found a way to reduce the large data stream.

"We now control the chip so that the entire video image is not constantly renewed, rather only that part of the display in which something changes." For example, if an actor runs through a room in a movie, only his position changes, not the background. In applications such as a navigation system for cyclists, in which only arrows or metre information is displayed, it is unnecessary in any case to constantly renew the whole picture, says Wartenberg. "To put it simply, we have now adapted the circuit so that it only lets through that portion of the data stream which changes." 

Semiconductors and control electronics redesigned

Meanwhile, there is a prototype that the experts are now presenting at the electronica trade fair in Munich. The energy savings are considerable: While ordinary data glasses require an output of 200 milliwatts, the Fraunhofer FEP display suffices with two to three milliwatts – a mere one hundredth of the original amount. Nevertheless, it is still bright, thanks to the OLED technology.

In order to reduce the video data stream, Wartenberg and his colleagues first had to redesign the chip and the control electronics in large parts. The pixels of today’s displays, which are designed for rapid, repeated imaging, normally stop lighting up after a short time. In a model that does not constantly update the entire screen, that cannot be, because the still areas of the display quickly appear black otherwise. The development by the Fraunhofer FEP controls the pixels so that they continue to light.

Wartenberg can imagine the display being interesting not only for industry, but also for private clients and athletes in the future. Joggers could use it to constantly check their heart rate and would no longer have to look at the jiggling smartphone display. The scientists are ready for projects in order to bring the display to the market soon.

Fraunhofer at the electronica

Where?
electronica World’s leading trade fair for components, systems and applications of electronics, Hall A4, Booth 113, Messe München

When?
November 8-11, 2016

Who?
Joint Fraunhofer booth:
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Fraunhofer Institute for Integrated Circuits IIS
Fraunhofer Institute for Physical Measurement Techniques IPM
Fraunhofer Institute for Photonic Microsystems IPMS

Website:
http://s.fhg.de/electronica16

Weitere Informationen:

http://s.fhg.de/2T6

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Further reports about: Electron Beam Elektronik FEP OLED Organic Electronics Plasma Plasmatechnik data stream

More articles from Trade Fair News:

nachricht Hannover Messe 2018: Cognitive system for predictive acoustic maintenance
19.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>