Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TestLab Power Electronics at Fraunhofer ISE Accredited by DAkkS

03.06.2015

Certified Testing Services Offered in Accordance with International Guidelines

As the capacity of renewable energy continues to expand, controls for public grids need to adapt and become more dynamic. This also increases the requirements on the electrical properties of the power electronics connected to the grid. To ensure the reliability of power electronics in this context, Fraunhofer ISE has been carrying out tests in accordance with different standards and guidelines for many years. Since the end of April, the TestLab Power Electronics is accredited by Germany’s national accreditation body (DAkkS) and now offers an even wider range of testing services to its customers than before.


View of engineer working at the test setup in the TestLab Power Electronics of Fraunhofer ISE: PV array simulator (right) and device under test (left).

©Fraunhofer ISE

With the accreditation, Fraunhofer ISE expands its strong international reputation as one of the leading power electronics laboratories worldwide.

The TestLab Power Electronics (http://www.ise.fraunhofer.de/en/service-units/testlab-power-electronics) at Fraunhofer Institute for Solar Energy Systems ISE characterizes power electronic units such as inverters, DC/DC converters, chargers, etc. through to the megawatt range. In order to guarantee the reliability of power generating units, Fraunhofer ISE has been carrying out tests in accordance with the appropriate standards and guidelines for many years.

The accreditation by the DAkkS contains the major international guidelines for testing the overall efficiency and electrical characteristics of grid-connected inverters as well as for the validation of models simulating these characteristics. “Power electronic components are increasingly responsible for the stable and reliable operation of our electricity grid. For this reason, efficiency, quality and compliance to all relevant standards are decisive factors for the manufacturers in the market today,” says Sönke Rogalla, Group Head of “Sustainable Grids and Power Plants” in the Department of Power Electronics. “The accreditation of the TestLab Power Electronics by the DAkkS has confirmed our commitment to excellence and the high quality of our work.”

With their extensive laboratory equipment and the highly precise measurement systems, the engineers at TestLab Power Electronics are able to offer testing services based on different international grid codes and testing standards. These include Chinese, Spanish, Italian, British and other international feed-in directives.

“The cooperation with our clients begins long before the actual certification tests. We offer comprehensive support and consultation on the extensive normative requirements which are imposed on the devices today,” explains Roland Singer, Head of TestLab Power Electronics. “Based on our client’s needs, we draw up a customized test plan which covers as many international requirements as possible with the smallest measurement expenditure. This greatly reduces costs and testing times”.

Beyond their testing services, the Freiburg experts actively participate in different standardization committees to further develop the future grid codes. This enables them to present their customers with firsthand information on the current and future requirements in this area.

In the meanwhile, TestLab Power Electronics also offers its services on location by the customer or even in the field at large solar or wind parks. For this purpose, the engineers use their precise mobile measurement system to detect system perturbations and a test container to carry out so-called LVRT-tests. Low Voltage Ride Through (LVRT) indicates the capability of a device to support the grid voltage during short-term faults in the grid. The test container has already been employed several times to test combined heat and power plants (CHP) in the field. The LVRT behavior of several CHP units was measured up to a power of 550 kW and the grid-supporting performance was successfully verified.

Come and meet our experts at the Intersolar in Munich from June 10-12, 2015 in Hall A3.251.

Weitere Informationen:

http://www.ise.fraunhofer.de

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>