Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLM: New machine design and exposure concept facilitates scalable productivity and building space

13.11.2014

A this year’s EuroMold, which takes place in Frankfurt from November 25-28, 2014, the Fraunhofer Institute for Laser Technology ILT will for the first time present its new SLM machine design and exposure concept. This solution makes it easy to scale productivity and building space at significantly lower cost than previous machine designs allowed.

Additive manufacturing via selective laser melting (SLM) has been successfully used to make prototypes and small-series production runs of predominantly compact components for a number of years now.


Laboratory system: Processing head for scalable SLM machine designs.

Fraunhofer ILT, Aachen,

But users want the ability to increase productivity via higher build-up rates, and would like more flexibility in terms of available building space. Beyond this, it remains vitally important for series production on an industrial scale to have robust process engineering with reproducible component quality and the ability to monitor processes.

Experts are currently pursuing several approaches to increasing productivity and building space. Until now, productivity has mainly been boosted by using higher laser power in combination with optics systems that allow operators to adjust the beam diameter. Larger building spaces are currently achieved through the use of a movable single optical system or multiple parallel beam sources and scanner systems.

Systematic advantages of the new design

Scientists at Fraunhofer ILT used funding provided by the Cluster of Excellence »Integrative Production Technology for High-Wage Countries« to develop, design and build a new machine concept at their site in Aachen. Their design dispenses with scanner systems altogether and instead relies on a printer head featuring several individually controllable diode lasers that is moved using linear axes.

The advantage of multi-spot processing is that it means the system’s build-up rate can be increased significantly by adding a virtually unlimited number of beam sources – with no need for modifications to the system design, exposure control software or process parameters. The new plant design also makes it possible to increase building space simply by extending the travel lengths of the axis system and without changing the optical system.

In addition, the processing head has a local shielding gas flow system that guarantees a constant stream of shielding gas at each processing point, regardless of the size of the installation space. This is essential for achieving position-independent, reproducible component quality. The new design also allows process monitoring systems to be incorporated into the production system. These monitoring systems can also be set up in much simpler form than current coaxial systems allow.

Fraunhofer ILT at EuroMold 2014

Experts from Fraunhofer ILT will use a laboratory demonstrator to present their new SLM machine concept at the joint Fraunhofer booth C66 in Hall 11.

Contact

M.Sc. Florian Eibl
Rapid Manufacturing Group
Telephone +49 241 8906-193
florian.eibl@ilt.fraunhofer.de

Dr. Wilhelm Meiners
Head of Rapid Manufacturing Group
Telephone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany


Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

More articles from Trade Fair News:

nachricht Functional films and efficient coating processes
14.02.2017 | Fraunhofer-Gesellschaft

nachricht Nanotechnology for life sciences and smart products: international innovations with IVAM in Tokyo
07.02.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>