Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens enhances controller portfolio for process industry

16.06.2015

Achema 2015, Hall 11, Booth C3

  • Simatic S7-410 controller further developed
  • Long-term investment protection for companies
  • Fault-tolerant and scalable controllers for pharmaceuticals, chemical, metal
    and food & beverage industries
  • Temperature range of Simatic S7-410 controller extended up to 70 °C

Siemens continues to develop its controller portfolio to handle sophisticated tasks in the process industry. Users of the flexibly configurable controllers, which offer a high level of security and availability, will therefore benefit from long-term investment protection.


The first step was to give the Simatic S7-410 the standard coating for operation in toxic atmospheres and to further increase the fault tolerance of the redundant system. Siemens has also extended the ambient temperature range up to 70 degrees Celsius, which allows users to deploy the powerful Simatic PCS 7 controller in harsh environments, such as in oil and gas applications.

The next steps will be, for example, to further expand the Profinet functionality in order to increase fault tolerance and availability.

The Simatic S7-410 controller is an integral part of the Siemens Simatic PCS 7 process control system and currently the most powerful controller in the process industry. This is particularly obvious in the integrated scaling feature: it is now possible to apply a uniform hardware and software environment for very small systems of 100 I/Os up to large-scale plants of more than 100,000 inputs/outputs.

The Simatic S7-410 controller is available in a standard version as well as in fault-tolerant and fail-safe versions. The device therefore meets all the requirements of the process industry, including the chemical, glass, metal, food & beverage, pharmaceuticals, solar, oil & gas industries as well as the water and wastewater sectors.

For further information on Achema, please see www.siemens.com/press/achema2015


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015060157PDEN


Contact
Mr. David Petry
Process Industries and Drives Division
Siemens AG

Schuhstr. 60

91052 Erlangen

Germany

Tel: +49 (9131) 7-26616

david.petry​​@siemens.com

Dr. David Petry | Siemens Process Industries and Drives

More articles from Trade Fair News:

nachricht IVAM Product Market „High-tech for Medical Devices“ at COMPAMED 2017
18.10.2017 | IVAM Fachverband für Mikrotechnik

nachricht Fiber Optic Collimation C-Lenses will be Exhibited by FISBA at OFC 2017
14.03.2017 | FISBA AG

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>