Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens enhances controller portfolio for process industry

16.06.2015

Achema 2015, Hall 11, Booth C3

  • Simatic S7-410 controller further developed
  • Long-term investment protection for companies
  • Fault-tolerant and scalable controllers for pharmaceuticals, chemical, metal
    and food & beverage industries
  • Temperature range of Simatic S7-410 controller extended up to 70 °C

Siemens continues to develop its controller portfolio to handle sophisticated tasks in the process industry. Users of the flexibly configurable controllers, which offer a high level of security and availability, will therefore benefit from long-term investment protection.


The first step was to give the Simatic S7-410 the standard coating for operation in toxic atmospheres and to further increase the fault tolerance of the redundant system. Siemens has also extended the ambient temperature range up to 70 degrees Celsius, which allows users to deploy the powerful Simatic PCS 7 controller in harsh environments, such as in oil and gas applications.

The next steps will be, for example, to further expand the Profinet functionality in order to increase fault tolerance and availability.

The Simatic S7-410 controller is an integral part of the Siemens Simatic PCS 7 process control system and currently the most powerful controller in the process industry. This is particularly obvious in the integrated scaling feature: it is now possible to apply a uniform hardware and software environment for very small systems of 100 I/Os up to large-scale plants of more than 100,000 inputs/outputs.

The Simatic S7-410 controller is available in a standard version as well as in fault-tolerant and fail-safe versions. The device therefore meets all the requirements of the process industry, including the chemical, glass, metal, food & beverage, pharmaceuticals, solar, oil & gas industries as well as the water and wastewater sectors.

For further information on Achema, please see www.siemens.com/press/achema2015


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015060157PDEN


Contact
Mr. David Petry
Process Industries and Drives Division
Siemens AG

Schuhstr. 60

91052 Erlangen

Germany

Tel: +49 (9131) 7-26616

david.petry​​@siemens.com

Dr. David Petry | Siemens Process Industries and Drives

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>