Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reducing Weight through Laser-assisted Material Processing in Automobile Construction

13.10.2016

Lightweight construction concepts have become an indispensable part of today's production technology. The automobile industry, for example, uses press-hardened and ultra-high strength steels with a tensile strength of up to 2,000 MPa in car body construction to reduce weight. Compared to steels with lower strength, these high-performance steels allow smaller sheet thicknesses leading to lighter components, which in addition exhibit equally good or even improved crash behavior. To process these demanding high-performance materials, laser material processing is the method of choice.

Together with project partners from science and industry, scientists from the Fraunhofer Institute for Laser Technology ILT have advanced the development in separation and joining as well as heat treatment technologies. They will present selected results at the EuroBLECH from October 25 to 29 in Hanover, Germany (Hall 11, joint Fraunhofer Stand B135).


Laser combi-head for cutting and joining as well as additive manufacturing by means of laser metal deposition.

Fraunhofer ILT, Aachen.


Laser cutting with subsequent laser for heat treatment.

Fraunhofer ILT, Aachen.

Laser Processing of Ultra-high Strength Steels

Sheets made of ultra-high strength steels are commonly used for B-pillars or side door sills of passenger cars, where an extremely high absorption of kinetic energy is a key issue in the event of an impact. However, the high strength of these materials makes it necessary to adjust the processing methods, such as cutting and joining. Conventional mechanical cutting and joining processes, such as stamping, clinching or riveting, cannot be used at a reasonable expense.

As an alternative, the tool “light” has proven its value as a processing method in industrial applications. Laser cutting has already proven itself many times as a separation process, while joining is essentially achieved by spot welding. Both methods, however, lead to metallurgical effects that can adversely affect the component properties. During cutting, hardening occurs in the edge zone of the cut edge; in the case of spot welding, a heat-affected zone forms with a distinct hardening reduction around the welding spot.

These two effects lead, in the worst case, to the failure of the joint and thus, in the case of damage, to a reduced absorption of the kinetic energy in the component. By means of local laser heat treatment in the cutting edge region and in the joining zones, this weakening can be counteracted. The hardness and ductility of the material can thus be adjusted locally to tensile elongations of 10 to 15 %.

Joining ultra-high strength materials requires a low energy per unit length. This can be achieved with laser welding at 20 to 80 kJ/m. For thin plates of chromium steels with martensitic microstructure and tempering steels, suitable fusion welding parameters have been developed at Fraunhofer ILT. TWIP steels containing high content of manganese have also been successfully joined by laser welding in joints with the same as well as with dissimilar materials. A loss of the strength was countered here by a suitable load control.

Laser Combi-heads for the Processing of Car Body Components

Last but not least, it makes sense to combine individual process steps in one tool for economic reasons. This is the starting point of the collaborative project KLASSE, sponsored by the German Federal Ministry of Education and Research (BMBF); the project is being carried out by the Fraunhofer Institute for Laser Technology ILT along with partners from the automotive industry and laser plant construction. The work in "KLASSE" has resulted in a combined processing head with a hybrid laser beam source consisting of a diode laser for heat treatment and a fiber laser for cutting.

For several years now, a laser processing head developed by Fraunhofer ILT and marketed by Laserfact GmbH has been successfully used in the industry, combining different work steps. The head incorporates the two process steps "cutting" and "welding" into one machine without a need for retooling. In the spring of 2016, a powder nozzle was integrated into the combi-head, enabling it to carry out additive manufacturing steps by means of laser metal deposition.

Thanks to this integration, set-up times can be minimized and highly flexible production made even more efficient. In addition, the combi-head can also be used to cut composite materials, e.g. carbon-fiber reinforced components, which are becoming increasingly popular in car body manufacturing due to their low weight and excellent mechanical properties.

Local Softening of Cold-rolled Steels

After cold-rolling, cold-strengthened steels are generally subjected to overall recrystallization annealing. In the cold-strengthened state, the thickness of the steel sheets can be reduced, but the material can only be deformed to a lesser degree, and its ability to absorb energy – in the event of a crash – is reduced significantly. A local heat treatment can improve the crash properties of the components (e.g. controlled folding of a crash box) by introducing soft zones into it. In sheet-metal plates made of low-alloy steels, a combination of cold rolling and local laser heat treatment prevents cracks from occurring in the subsequent forming process at particularly stressed areas, typically at the edges of shaped components.

The project "Local Laser Heat Treatment of Cold Strengthened Steels for Improvement of Forming and Functional Characteristics" (LAKS) is being funded by the German Federation of Industrial Research Associations (AiF) and carried out at Fraunhofer ILT and the Metal Forming Institute (IBF) at RWTH Aachen University. Based on parameter studies, the institutes are first determining correlations between the temperature-time profiles and the resulting properties and mechanical properties. Subsequently, deformation tests and crash tests shall be carried out. The latter will be validated in forming tests under quasi-static as well as under sudden loads. In future development steps, the institutes shall investigate corrosion properties, simulate the deformation in production and operation as well as arrange the process into the production process optimally.

Contact

Dr. Andreas Weisheit
Head of Group Cladding and Heat Treatment
Phone +49 241 8906-403
andreas.weisheit@ilt.fraunhofer.de

Dr. Dirk Petring
Head of Group Macro Joining and Cutting
Phone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT Laser Lasertechnik heat treatment kinetic energy mechanical properties

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>