Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016

According to a study undertaken by the management consultants McKinsey, LED lighting will account for approx. 70 percent of the lighting market by the year 2020. The requirement for complex header optics which direct the light is projected to increase in tandem with the number of LEDs. Glass optics come into their own wherever particularly high levels of resistance to extreme temperatures and UV radiation are required. The non-isothermal glass molding technique permits these to be manufactured in one single manufacturing step.

The Fraunhofer Institute for Production Technology IPT will be demonstrating how companies in the LED market can profit from the rapid and cost-effective process at the Optatec, the International Trade Fair for Optical Technologies from 7-9 June in Frankfurt am Main.


TIR lighting optics made of glass

Source: Fraunhofer IPT


LED optics and corresponding mold

Source: Fraunhofer IPT

Whereas there are already a number of established and economically efficient manufacturing process suitable for plastic LED optics, the manufacture of glass optics for high-end applications is still associated with high levels of outlay.

In contrast to conventional grinding and polishing, complex glass optics and even microstructured surfaces with a diverse range of optical functional areas can be manufactured in one single process step: a pre-portioned glass blank is heated to temperatures of up to 900 °C in a special heating furnace then formed under high pressure within only a few seconds.

The short process times along with the fact that no further steps are required for finishing makes this process ideal for large-scale manufacture. The advantages of glass as an engineering material can now finally be exploited in illumination optics.

Cost-efficient and high-precision: Large-scale production of molded optics

The aim of the ongoing research and development work at the Fraunhofer IPT in Aachen is to increase the dimensional accuracy of the optics manufactured in non-isothermal glass molding operations. As part of this development, forming tools made of new ceramic materials with particularly long service life are used in manufacturing processes, which have been specially adapted for these tools.

Additional work currently underway at the Fraunhofer IPT focuses on the manufacture of extremely small glass optics, only a few millimeters in diameter. There are already some very promising approaches to producing large numbers of individual optics in only one processing step from commercially available flat glass. This can improve the economic viability of the process still further and is helping to open up entirely new areas of application.

Contact

Dipl.-Ing. Dipl.-Wirt. Ing. Holger Kreilkamp
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
52074 Aachen
Germany
Phone +49 241 8904-454
holger.kreilkamp@ipt.fraunhofer.de

www.ipt.fraunhofer.de

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20160530-optatec-2016-led.ht...
http://www.centimo.eu

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>