Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel sensor system provides continuous smart monitoring of machinery and plant equipment

26.03.2015

A new method of continuously monitoring the status of machinery is currently being developed by a research team led by Professor Andreas Schütze of Saarland University.

The mobile tablet-based system supplies information on the operational state of industrial machinery and plant equipment and can inform operators if a part needs to be replaced or if a repair can be postponed. The system uses sensors that continuously acquire data on parameters such as vibrational frequency or temperature.


New method of continuously monitoring the status of machinery: The research team led by Andreas Schütze (left, right: Nikolai Helwig) will be showcasing the method using a hydraulic test bench.

Credit: Oliver Dietze

The engineers in the research team are working with the German Research Center for Artificial Intelligence (DFKI) and the HYDAC group to automatically associate patterns in the data with typical error conditions or failure modes.

The researchers will be showcasing the method using a hydraulic test bench at HANNOVER MESSE from April 13th to April 17th. The team will be exhibiting at the Saarland Research and Innovation Stand in Hall 2, Stand B 46.

It is well-known that long before a piece of technical equipment actually fails, changes occur in its operational behaviour. The machine might start to make different sounds or to vibrate more strongly, or it may become hot. And it’s not just domestic washing machines that act this way, the same behaviour is found in very large machines such as wind turbines or industrial process plants.

If a part fails or if a valve or pump suddenly stops working, if the cooling system malfunctions or the pressure is too low, the consequence all too often is that an entire plant has to shut down – and that can prove to be expensive. ‘Our sensor system allows us to observe the current condition of a plant. We are working on getting the system to issue very early warnings at the first sign that the plant may fail or malfunction. By combing multiple sensors we are able to register even the smallest of changes – changes that would simply not be detectable with a single sensor,’ explains Andreas Schütze.

The approach adopted by the team involves attaching vibration sensors at numerous positions on the machine to provide a continuous stream of measurement data. The engineers also incorporate data from the process sensors that are now installed as standard on most of today’s machines. The research group will be using a hydraulic test bench to demonstrate their system at HANNOVER MESSE 2015.

‘We are studying how we can correlate sensor signal patterns, such as vibrational frequencies, with typical damage and failure modes, such as reduced cooling performance or a drop in accumulator pressure,’ explains Schütze. To do this, the researchers have been analysing large quantities of measurement data in order to identify those patterns in the data that can be assigned to particular changes in the machine’s state.

‘From the mass of data acquired we filter out a manageable quantity of relevant sensor data that is characteristic of certain machine damage scenarios,’ explains graduate engineer Nikolai Helwig, who co-developed the hydraulic test bench. ‘Our aim is to be able to reliably detect disturbances in the machine’s operating cycle during the incipient damage phase and to establish mathematical models for the different fault levels.’

This information about the relationship between sensor signal patterns and incipient malfunction or damage is used by the engineers to teach the system so that in future it will be able to identify these states automatically. The project is a collaborative enterprise between Schütze’s team of engineers at Saarland University and the Center for Mechatronics and Automation Technology (ZeMA) and researchers at the German Research Center for Artificial Intelligence (DFKI) and the HYDAC group. ‘We use statistical methods to analyse the data. Future users of the system need to be able to interpret the numerical data correctly. That’s why we are working on automatically assigning meaning to the results generated by the system and then translating this into useful information for the user. The aim is to develop the system so that it can be trained to work with different types of machine and plant equipment and can be adapted and customized to meet their specific requirements,’ says Schütze.

By continuously monitoring the condition of the machine, the system can also recommend when to carry out particular remedial measures, such as replacing a spare part. ‘This makes it easier to plan maintenance operations on large or difficult-to-access plant machinery. Not only does this help to avoid damage, machine downtimes and production stoppages, it also avoids unnecessary maintenance work, such as the scheduled replacement of a machine component that is, in fact, still fully functional,’ says Schütze. ‘As the system is also capable of analysing whether production machinery was operating properly during a manufacturing process, it can also be used for quality control purposes. There are a large number of potential applications of this system, particular in the smart manufacturing processes envisaged under Industry 4.0.’

Furthermore, the integrated network of sensors monitors whether the sensors themselves are functioning properly. ‘The system is constantly checking whether the individual sensors are supplying reliable measurement data. If a particular sensor doesn’t appear to be working correctly, the data it delivers is not included in the analysis. The system is therefore robust and has no difficulty coping with the failure of individual sensors, as defective sensors are simply bypassed,’ explains Schütze.

Contact:
Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, E-mail: schuetze@lmt.uni-saarland.de, http://www.lmt.uni-saarland.de
Dipl.-Ing. Nikolai Helwig: +49 (0)681 8578741; E-mail: n.helwig@mechatronikzentrum.de
Dipl.-Ing. Eliseo Pignanelli: Tel.: +49 (0)681 8578744, E-mail: e.pignanelli@lmt.uni-saarland.de

During HANNOVER MESSE 2015, the Saarland Research and Innovation Stand can be contacted at Tel.: +49 (0)681 302-68500

Background:
Saarland University, Saarland University of Applied Sciences (HTW) and industrial partners are working together at ZeMA – Center for Mechatronics and Automation Technology in Saarbrücken to strengthen the fields of mechatronic engineering and industrial automation in Saarland and to promote technology transfer. ZeMA is home to a large number of industry-specific development projects and projects aimed at transforming research findings into practical industrial applications. http://www.zema.de/

The Saarland Research and Innovation Stand is organized by Saarland University's Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>