Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel sensor system provides continuous smart monitoring of machinery and plant equipment


A new method of continuously monitoring the status of machinery is currently being developed by a research team led by Professor Andreas Schütze of Saarland University.

The mobile tablet-based system supplies information on the operational state of industrial machinery and plant equipment and can inform operators if a part needs to be replaced or if a repair can be postponed. The system uses sensors that continuously acquire data on parameters such as vibrational frequency or temperature.

New method of continuously monitoring the status of machinery: The research team led by Andreas Schütze (left, right: Nikolai Helwig) will be showcasing the method using a hydraulic test bench.

Credit: Oliver Dietze

The engineers in the research team are working with the German Research Center for Artificial Intelligence (DFKI) and the HYDAC group to automatically associate patterns in the data with typical error conditions or failure modes.

The researchers will be showcasing the method using a hydraulic test bench at HANNOVER MESSE from April 13th to April 17th. The team will be exhibiting at the Saarland Research and Innovation Stand in Hall 2, Stand B 46.

It is well-known that long before a piece of technical equipment actually fails, changes occur in its operational behaviour. The machine might start to make different sounds or to vibrate more strongly, or it may become hot. And it’s not just domestic washing machines that act this way, the same behaviour is found in very large machines such as wind turbines or industrial process plants.

If a part fails or if a valve or pump suddenly stops working, if the cooling system malfunctions or the pressure is too low, the consequence all too often is that an entire plant has to shut down – and that can prove to be expensive. ‘Our sensor system allows us to observe the current condition of a plant. We are working on getting the system to issue very early warnings at the first sign that the plant may fail or malfunction. By combing multiple sensors we are able to register even the smallest of changes – changes that would simply not be detectable with a single sensor,’ explains Andreas Schütze.

The approach adopted by the team involves attaching vibration sensors at numerous positions on the machine to provide a continuous stream of measurement data. The engineers also incorporate data from the process sensors that are now installed as standard on most of today’s machines. The research group will be using a hydraulic test bench to demonstrate their system at HANNOVER MESSE 2015.

‘We are studying how we can correlate sensor signal patterns, such as vibrational frequencies, with typical damage and failure modes, such as reduced cooling performance or a drop in accumulator pressure,’ explains Schütze. To do this, the researchers have been analysing large quantities of measurement data in order to identify those patterns in the data that can be assigned to particular changes in the machine’s state.

‘From the mass of data acquired we filter out a manageable quantity of relevant sensor data that is characteristic of certain machine damage scenarios,’ explains graduate engineer Nikolai Helwig, who co-developed the hydraulic test bench. ‘Our aim is to be able to reliably detect disturbances in the machine’s operating cycle during the incipient damage phase and to establish mathematical models for the different fault levels.’

This information about the relationship between sensor signal patterns and incipient malfunction or damage is used by the engineers to teach the system so that in future it will be able to identify these states automatically. The project is a collaborative enterprise between Schütze’s team of engineers at Saarland University and the Center for Mechatronics and Automation Technology (ZeMA) and researchers at the German Research Center for Artificial Intelligence (DFKI) and the HYDAC group. ‘We use statistical methods to analyse the data. Future users of the system need to be able to interpret the numerical data correctly. That’s why we are working on automatically assigning meaning to the results generated by the system and then translating this into useful information for the user. The aim is to develop the system so that it can be trained to work with different types of machine and plant equipment and can be adapted and customized to meet their specific requirements,’ says Schütze.

By continuously monitoring the condition of the machine, the system can also recommend when to carry out particular remedial measures, such as replacing a spare part. ‘This makes it easier to plan maintenance operations on large or difficult-to-access plant machinery. Not only does this help to avoid damage, machine downtimes and production stoppages, it also avoids unnecessary maintenance work, such as the scheduled replacement of a machine component that is, in fact, still fully functional,’ says Schütze. ‘As the system is also capable of analysing whether production machinery was operating properly during a manufacturing process, it can also be used for quality control purposes. There are a large number of potential applications of this system, particular in the smart manufacturing processes envisaged under Industry 4.0.’

Furthermore, the integrated network of sensors monitors whether the sensors themselves are functioning properly. ‘The system is constantly checking whether the individual sensors are supplying reliable measurement data. If a particular sensor doesn’t appear to be working correctly, the data it delivers is not included in the analysis. The system is therefore robust and has no difficulty coping with the failure of individual sensors, as defective sensors are simply bypassed,’ explains Schütze.

Prof. Dr. Andreas Schütze, Tel.: +49 (0)681 302-4663, E-mail:,
Dipl.-Ing. Nikolai Helwig: +49 (0)681 8578741; E-mail:
Dipl.-Ing. Eliseo Pignanelli: Tel.: +49 (0)681 8578744, E-mail:

During HANNOVER MESSE 2015, the Saarland Research and Innovation Stand can be contacted at Tel.: +49 (0)681 302-68500

Saarland University, Saarland University of Applied Sciences (HTW) and industrial partners are working together at ZeMA – Center for Mechatronics and Automation Technology in Saarbrücken to strengthen the fields of mechatronic engineering and industrial automation in Saarland and to promote technology transfer. ZeMA is home to a large number of industry-specific development projects and projects aimed at transforming research findings into practical industrial applications.

The Saarland Research and Innovation Stand is organized by Saarland University's Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University.

Claudia Ehrlich | Universität des Saarlandes

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>