Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel and highly productive process for robust layers on flexible materials

24.01.2018

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma
Technology FEP will be presenting research advances in the area of
high-rate coating at the 2018 FLEX conference in Monterey, USA from
February 12 – 15, 2018.

Wearables, arched displays and buildings facades increasingly require bendable, flexible surfaces with taylored functionality and properties. These coating functionalities include the reduction of gas permeation, protection against chemicals, radiation, and mechanical contact as well as conductive coatings and layers with specific optical properties.


Film with a transparent barrier coat

© Fraunhofer FEP | Picture in printable resolution: www.fep.fraunhofer.de/press


An array of hollow-cathodes has already been successfully employed for coating widths of up to 2.85 meters in an industrial application

© Fraunhofer FEP | Picture in printable resolution: www.fep.fraunhofer.de/press

Surfaces are equipped with thin functional layers to achieve these properties and functionalities. Increasing productivity and efficiency of these coating processes is an important focus of our applications-oriented research.

One of these deposition technologies is plasma-enhanced chemical vapor deposition. Fraunhofer FEP is active in the field of improved PECVD processes for high productivity and efficient application in roll-to-roll coating equipment. These processes provide large-area, cost-effective coating of flexible substrate material. In contrast to conventional processes, Fraunhofer FEP employs magnetrons and hollow-cathodes as plasma sources.

Michiel Top, Project Manager in the Flat and Flexible Products division at Fraunhofer FEP, is pleased with the results: “The development of our hollow-cathode PECVD process has provided us with a versatile tool for the deposition of silicon-containing plasma polymer layers on flexible substrates. The process not only allows us to scale up to web-widths up to four meters but can also be directly combined with other deposition techniques like sputtering and evaporation in a single facility.”

Dynamic coating rates of up to 3000 nanometers for 1 meter per minute web-speed have been attained for plasma polymer layers. This figure is about five to ten times higher compared to conventional processes like microwave PECVD. Plasma polymer layers deposited upon functional layers offer good protection against chemical attack (acids and salts) and against mechanical loading such as found in winding equipment when materials undergo additional roll-to-roll processing. It was shown that the water vapour transmittance of an inorganic barrier coating can be reduced by up to 50% by in-line deposition of a polymer-like protective layer.

This process allows for the deposition of taylored layer’s properties (composition, hardness, and refractive index) without losing the possibility to tune the dynamic coating rate within prescribed limits. In combination with sputter processing for example, this facilitates in-line deposition of multiple layers in a single pass for optical interference coating systems, saving process steps and therefore money.

The researchers see the next goal to be further improvement of both the process and the layers for various application scenarios, such as in flexible electronic components, through close cooperation with partners from industry such as machine builders and end-users. This way, transfer of the process towards the production level is targeted in the near future.

Fraunhofer FEP at 2018 FLEX:
Exhibition Booth: No. 5002

Presentations:
Wednesday, February 14, 2018: Session 12: FE Tools & Methods
12.2 B, 04:20 p.m., Michiel Top:
Application of high-rate PECVD for improved mechanical stability of Roll-to-roll anufactured flexible organic electronics
http://s.fhg.de/vUF

Thursday February 15, 2018: Session 17: Substrates
17.2 B, 10:40 a.m., Dr. Manuela Junghähnel:
Refinement of transparent conductive films on flexible glass by in-line flash-lamp annealing
http://s.fhg.de/Syt

Press Contact:

Annett Arnold
Head of Corporate Communications
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586-333 | presse@fep.fraunhofer.de
Winterbergstr. 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/Rcv

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht Hannover Messe 2018: Cognitive system for predictive acoustic maintenance
19.04.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht ILA 2018: Cost-effective carbon fibers for light-weight construction
18.04.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>