Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Process Technology Unlocks Boost in Laser Productivity

18.05.2017

»The laser is a solution seeking a problem,« said Ted Maiman in 1964. Today, the laser has proven the best solution to an array of problems. At LASER World of PHOTONICS 2017 in Munich/Germany, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how it is using process technology to enable efficient laser applications in a range of sectors, thereby driving forward Digital Photonic Production in the 21st century.

Over the past decades, new beam sources have taken the laser community by storm, with disk, fiber and diode lasers all making the transition into industrial manufacturing – and now ultrafast lasers, too. »With the most powerful lasers, it’s a case of working out how to bring that power to bear,« says Dr. Arnold Gillner of the Fraunhofer ILT in Aachen. »Right now, we need a thorough understanding of the processes at work and the right process technology if we are to open up new fields of application for the laser.«


Robust constructed optical parametric oscillator. This module will generate the final measuring wavelength in the MERLIN laser beam source.

Fraunhofer ILT, Aachen, Germany/ V. Lannert.


Fraunhofer Joint Stand »Customized Solutions« at LASER World of Photonics 2015 in Munich

Fraunhofer ILT, Aachen, Germany/ Klaus D. Wolf.

This is precisely what Fraunhofer ILT in Aachen is working on, in addition to its research of a range of beam sources. The focus of R&D activities is not only on efficiently distributing the laser beam, but in the first instance on developing a thorough process understanding – which can then be used to optimize whole machines and systems from simulation to full-scale production.

Laser Material Deposition Takes off

A deep understanding of the processes at work is at the heart of a new technique known as extreme high-speed Laser Material Deposition (known by its German acronym EHLA). Thomas Schopphoven explains the key element of the new process: »With EHLA, the laser melts the powder particles while they are still above the weld pool.« As a result, components can be coated 100 to 250 times faster than with conventional laser material deposition, with a minimum of heating.

The technique is intended to enable surfaces to be coated rapidly, offering a resource-efficient and cost-effective way of applying thin coats just tenths of millimeters thick. These coatings do not chip, unlike hard chrome plating, and the EHLA process is also more environmentally friendly.

Applying Microstructures over Large Areas Using Ultrashort Pulses

Lasers have long been used in the automotive industry for cutting and welding tasks. Now they have a new task: the application of microstructures to injection molds over large areas. Microstructures can be found all over the car, for instance in the cylinder, where they reduce fuel consumption, and in the panels of the interior, where they assure a high-quality finish.

Lasers with ultrashort pulses are very effective at applying these structures up to the micrometer range, but are let down by their pace. Experts in Aachen have come up with an elegant solution to the problem by combining two beam sources: a picosecond laser for the finest work, and a fast nanosecond laser for larger areas.

Known as eVerest, the project is sponsored by the German Federal Ministry of Education and Research, and aims to develop complete machine and system technology for the technique. This simpler solution would eliminate complex etching processes, and even pave the way for automation in a significant part of the process.

The Future is Digital

The laser industry is also looking more and more to Industry 4.0. In the future, industrial laser users will be seeking to fully exploit all their production process data.

In Aachen, systematic development of digitally connected laser production is in full swing in the form of the »Research Campus Digital Photonic Production« sponsored by the German Federal Ministry of Education and Research.

At LASER World of PHOTONICS 2017, to be held in Munich/Germany June 26-29, experts from the Photonics Cluster at the RWTH Aachen Campus will be demonstrating how they are already collaborating with numerous companies to shape the future of Digital Photonic Production.

Fraunhofer ILT at LASER 2017

At the joint Fraunhofer stand, A2.431, the experts from Aachen will be showcasing a range of new developments. These include the MERLIN project, for which they will be presenting a laser system for the measurement of methane concentrations in the atmosphere using satellites.

Also on show will be a new 3D printer for metal components. Offering a highly cost-effective model and a comprehensive range of consultancy services, the Aachen researchers will be targeting SMEs looking for a no-nonsense way to build up their expertise in additive manufacturing (in this instance, Selective Laser Melting in particular). At the LASER World of PHOTONICS practice-oriented application panels, our experts will be present with numerous lectures.


Weitere Informationen:

http://s.fhg.de/kSC

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

nachricht Medica 2017: New software enables early diagnosis of arteriosclerosis
06.11.2017 | Technische Universität Kaiserslautern

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>