Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laser joining technologies at ‘K 2016’ trade fair

19.09.2016

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than 200,000 visitors from around the world. Focus topics this year include industry 4.0, resource efficiency, new materials and lightweight design.


Image 1: Structuring a metal probe with a high-power fiber laser in preparation for a metal-plastic bond.

© Fraunhofer ILT, Aachen, Germany.


Image 2: Acrylic glass demonstrator fabricated by laser welding, cutting, ablating as well as polymer-metal joining.

© Fraunhofer ILT, Aachen, Germany.

Isotropic joining of plastic and metal

A key factor in lightweight design is the ability to form positive and permanent bonds between metallic and plastic surfaces. There is actually already a known laser method for this, particularly for fiber composite materials used in the aerospace and automotive industries.

The method involves first structuring the metal surface with the laser, then bonding it with the heated plastic surface. Previously, the laser structuring was done in a scanning process that produces lines on the metallic surface.

As part of the HyBriLight project funded by Germany’s Federal Ministry of Education and Research (BMBF), specialists at Fraunhofer ILT developed a new process for structuring that uses an ultrashort pulse (USP) laser, which produces cone-like protrusions (CLP) on the metal. These randomly distributed micro-elevations increase the surface area five- to tenfold.

As a result, the bond is not only stronger, but also equal in all directions because, unlike with the scan lines, the surface now has an isotropic structure. The process has been tested in the lab and also works for injection molding with metallic inserts. This method will also be on display with a large demonstrator (image) at K 2016.

Absorber-free laser transmission welding

When laser welding thermoplastics, one of the components is usually transparent, and an absorber material is added to the second part to enable it to better absorb the laser radiation. The laser then passes through the first component and melts the second, thus joining the two parts.

The additive can be omitted if a longer-wavelength laser is used. Then both components absorb the radiation and care must be taken to ensure selective melting while minimizing the size of the heat-affected zone (HAZ). The process required for this was developed at Fraunhofer ILT and involves rapidly (>1 m/s) and repeatedly guiding the laser beam along the welding contour while simultaneously discharging the heat above and below the parts being joined.

The method is expected to be of interest particularly in the field of medical engineering, where additives can pose a risk to biocompatibility. However, the method can also be used in other applications where absorbers are not permissible for reasons of appearance, cost or function.

Secure and gentle sealing of multilayer films

A similar laser can also be used to seal multilayer films against external media. This is useful, for example, when processing lithium batteries or OLED displays, which contain materials that are very sensitive to oxygen or water vapor. For this reason, they are encapsulated in special high-barrier multilayer films.

Normally the film is adhesively bonded or heat-sealed around the perimeter of the components to be protected, creating a pocket that includes, for instance, the flexible organic LED. Now, with a special laser, it is possible to selectively melt just one layer of the film, making the production-ready sealing process even gentler for the packaged component.

In addition to its suitability for electronics, this technology could also be of interest in the area of medical packaging that has to satisfy stricter requirements. Developed as part of a research project, this technology is currently still being refined. Future plans for it include encapsulation of flexible solar cells and use in roll-to-roll processing.

Fraunhofer ILT will have several specialists in the development of new laser-based technologies and processes representing the institute at the joint Fraunhofer booth at K 2016, Hall 7, Booth SC01.

Contact

Dr.-Ing. Alexander Olowinsky
Group Manager Micro Joining
Telephone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Dipl. Wirt.-Ing. Christoph Engelmann
Micro Joining Group
Telephone +49 241 8906-217
christoph.engelmann@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>