Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medtec 2015: Getting the perfect fit for artificial hips

08.04.2015

When a patient receives a new hip, it is usually adjusted only approximately to leg length. Greater accuracy requires a more precise measuring process as well as adjustable implants. Now, a new type of measurement method coupled with a modular implant should allow orthopedic surgeons to precisely calibrate leg length after the operation so it matches its original length. The researchers will be introducing their development at the Medtec expo in Stuttgart, April 21-23 (Hall 7, Booth B04).

A painful hip that feels unstable and no longer has the same range of motion: For many patients, this means they need a prosthetic hip – something that happens to more than 200,000 people each year in Germany alone.


Modular hip implant.

© Fraunhofer IWU


Measuring system for determining leg length.

© Fraunhofer IWU

Implant manufacturers face numerous challenges; for example, the artificial joints may eventually break. In addition, orthopedic surgeons currently have no suitable method for precisely measuring leg length before the operation or for adjusting the implants accordingly.

The result is that after the operation, the leg can actually be longer or shorter than it used to be. This leads to problems with the spine, which have to be resolved using shoe inserts.

There’s a better solution on the horizon: With the completely new measuring technique developed by the Fraunhofer Institute for Machine Tools and Forming Technology IWU, orthopedic surgeons will be able to measure their patients’ leg lengths much more precisely.

The Fraunhofer researchers collaborated on the new system with several project partners: the Clinic for Orthopedics, Trauma Surgery and Plastic Surgery at the Leipzig University Hospital; University of Applied Sciences Zwickau and its Research and Transfer Centre; AQ Implants GmbH; and MSB-Orthopädie-Technik GmbH.

“The margin of error in our process is less than one centimeter,” explains Dr. Ronny Grunert, a researcher at IWU. “Eventually we’d like to get that down to five millimeters.” Currently, the usual procedure calls for the doctors to determine leg length with a tape measure, which can lead to errors of up to two centimeters.

Here’s how it works: With the patient in a prone position, the doctor affixes a small plastic box containing two LEDs to the patient’s shin. The doctor then takes hold of the patient’s heel and lifts it upward. With that motion, the two lights trace an arc that is recorded by a camera positioned about 1.5 meters to the side of the patient.

The principle is similar to that of a compass. The hip joint, from which the leg “hangs,” is essentially the point of the compass, while the LEDs act as the pencil. If the distance between the two changes, i.e. if the leg becomes shorter or longer, that will change the arc traced by the LEDs. The doctor takes this measurement twice – once right before the operation and once after the implant has been temporarily inserted. The box remains on the leg during the operation.

A software program compares both arcs to determine if the leg is the same length it was before the procedure. If necessary, the doctor can make adjustments to the artificial hip. Initial testing of a measuring system prototype has already met with success at the Leipzig University hospital. There are plans for a clinical trial later this year, and the new system could be on the market in about two years.

Unbreakable, adjustable hip implants

Fraunhofer’s researchers also optimized the hip implants, again working together with partners from industry, medicine and research. “We’ve developed an implant that can be adjusted to each individual patient,” says Grunert. The trick was to do away with prefabricated implants in various sizes and use a modular system instead.

In this method, the doctor can select the right hip stem as well as the right neck for each patient. Special screw connections are used to attach the individual parts to each other and the combined unit is implanted in the hip for testing. The doctor now measures the leg length, and, if necessary, can easily separate the implant’s various components to exchange them for better-fitting parts or adjust them as required.

Another advantage is that the artificial hip is less prone to breakage than conventional modular models with a conical clamping ring. Currently, the doctor connects the stem and the neck of the prefabricated artificial hip during the operation with a well-placed stroke of the hammer. This puts tremendous stress on the connection point, a conical clamping ring.

Furthermore, once the parts have been joined together, it’s virtually impossible to separate and adjust them. That’s not the case for the specialized screws that hold the parts of the new implants together. The point where they connect is mechanically stable and prevents the implant from breaking.

The new system was developed within the “artificial joints” cooperative network, which is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) and coordinated by Fraunhofer IWU. At the Medtec expo, the researchers will present the leg-length measuring system and the modular hip implant as well as the artificial joint network.

Weitere Informationen:

http://www.fraunhofer.de/en/press/research-news/2015/april/getting-the-perfect-f...

Britta Widmann | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht Diamond Lenses and Space Lasers at Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>