Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016

From May 31st to June 02nd, 2016, international industry representatives will be coming to Stuttgart for an exchange about innovations, further developments and trends. The Laser Zentrum Hannover e.V. (LZH), too, together with the LZH Laser Akademie GmbH, will be presenting current research and development results, a broad services portfolio and further education programs for industrial laser users.

In hall 4 at stand E35, the research institute from Lower Saxony will be showing exhibits and services for laser micro processing with ultrashort pulse lasers, underwater laser cutting and additive manufacturing.

Highly precise and highly flexible: Manufacturing micro structures, sensors and functional surfaces with the laser


Individual magnesium implant, manufactured by optimized Selective Laser Melting

Photo: LZH


Efficient processes: Model of laser underwater cutting.

Photo: LZH

Laser micro processing enables manufacturing processes for components that are not possible with conventional manufacturing techniques. Here, ultrashort pulse lasers with pulse durations in the pico- and femtosecond range are used to generate highly precise and durable structures in almost all solid materials.

Another advantage of this process, besides the flexibly usable lasers, is that thermal and mechanical damages are negligible. Thus, for example thin-film strain sensors for measuring forces and momentums can be applied directly on the component. In this way, picosecond lasers generate functional surfaces with variable geometries by laser structuring. An application field for these surfaces is gravure printing in organic electronics.

Cutting metals faster and more cost-efficient underwater

Underwater works are often time-consuming and physically very demanding for the divers. The LZH develops an automated laser-based cutting process that increases the cutting speed significantly. Currently, the main application is cutting sheet pilings. But this laser-based process is also suited for repairing offshore-facilities and ships, as well as for dismantling nuclear power plants or for underwater mining.

Additive manufacturing using Selective Laser Melting and laser deposition welding

With Selective Laser Melting (SLM) it is possible to create smallest three-dimensional structures, complex parts or individual implants virtually “out of nothing”. The LZH develops processes for the additive manufacturing of load-adapted parts and for the processing of special materials, such as magnesium.

With Selective Laser Micro Melting (SLµM) it is thus also possible to manufacture parts with resolutions up to <30 µm. When high-quality machine parts are damaged, they can in many cases be repaired by Laser Metal Deposition welding (LMD). Moreover, adding layers by LMD can protect three-dimensional surfaces from wear and corrosion.

Further education seminar „Additive Manufacturing Specialist“

The LZH Laser Akademie GmbH, one of the leading further education centers in applied laser technology, together with the Schweißtechnische Lehr- und Versuchsanstalt (SLV) Hannover is nationwide the first to offer a new certified further education seminar “Additive Manufacturing Specialist”. In this five-day course, skilled workers, master craftsmen and technicians learn how to operate systems for Selective Laser Melting.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Trade Fair News:

nachricht Self-illuminating pixels for a new display generation
22.05.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht “Electricity as a raw material” at ACHEMA 2018: Green energy for sustainable chemistry
16.05.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>