Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016

From May 31st to June 02nd, 2016, international industry representatives will be coming to Stuttgart for an exchange about innovations, further developments and trends. The Laser Zentrum Hannover e.V. (LZH), too, together with the LZH Laser Akademie GmbH, will be presenting current research and development results, a broad services portfolio and further education programs for industrial laser users.

In hall 4 at stand E35, the research institute from Lower Saxony will be showing exhibits and services for laser micro processing with ultrashort pulse lasers, underwater laser cutting and additive manufacturing.

Highly precise and highly flexible: Manufacturing micro structures, sensors and functional surfaces with the laser


Individual magnesium implant, manufactured by optimized Selective Laser Melting

Photo: LZH


Efficient processes: Model of laser underwater cutting.

Photo: LZH

Laser micro processing enables manufacturing processes for components that are not possible with conventional manufacturing techniques. Here, ultrashort pulse lasers with pulse durations in the pico- and femtosecond range are used to generate highly precise and durable structures in almost all solid materials.

Another advantage of this process, besides the flexibly usable lasers, is that thermal and mechanical damages are negligible. Thus, for example thin-film strain sensors for measuring forces and momentums can be applied directly on the component. In this way, picosecond lasers generate functional surfaces with variable geometries by laser structuring. An application field for these surfaces is gravure printing in organic electronics.

Cutting metals faster and more cost-efficient underwater

Underwater works are often time-consuming and physically very demanding for the divers. The LZH develops an automated laser-based cutting process that increases the cutting speed significantly. Currently, the main application is cutting sheet pilings. But this laser-based process is also suited for repairing offshore-facilities and ships, as well as for dismantling nuclear power plants or for underwater mining.

Additive manufacturing using Selective Laser Melting and laser deposition welding

With Selective Laser Melting (SLM) it is possible to create smallest three-dimensional structures, complex parts or individual implants virtually “out of nothing”. The LZH develops processes for the additive manufacturing of load-adapted parts and for the processing of special materials, such as magnesium.

With Selective Laser Micro Melting (SLµM) it is thus also possible to manufacture parts with resolutions up to <30 µm. When high-quality machine parts are damaged, they can in many cases be repaired by Laser Metal Deposition welding (LMD). Moreover, adding layers by LMD can protect three-dimensional surfaces from wear and corrosion.

Further education seminar „Additive Manufacturing Specialist“

The LZH Laser Akademie GmbH, one of the leading further education centers in applied laser technology, together with the Schweißtechnische Lehr- und Versuchsanstalt (SLV) Hannover is nationwide the first to offer a new certified further education seminar “Additive Manufacturing Specialist”. In this five-day course, skilled workers, master craftsmen and technicians learn how to operate systems for Selective Laser Melting.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Trade Fair News:

nachricht COMPAMED 2016 connected medical devices and people
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Successfully transferring Industrie 4.0 into reality
21.11.2016 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>