Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016


From May 31st to June 02nd, 2016, international industry representatives will be coming to Stuttgart for an exchange about innovations, further developments and trends. The Laser Zentrum Hannover e.V. (LZH), too, together with the LZH Laser Akademie GmbH, will be presenting current research and development results, a broad services portfolio and further education programs for industrial laser users.

In hall 4 at stand E35, the research institute from Lower Saxony will be showing exhibits and services for laser micro processing with ultrashort pulse lasers, underwater laser cutting and additive manufacturing.

Highly precise and highly flexible: Manufacturing micro structures, sensors and functional surfaces with the laser

Individual magnesium implant, manufactured by optimized Selective Laser Melting

Photo: LZH

Efficient processes: Model of laser underwater cutting.

Photo: LZH

Laser micro processing enables manufacturing processes for components that are not possible with conventional manufacturing techniques. Here, ultrashort pulse lasers with pulse durations in the pico- and femtosecond range are used to generate highly precise and durable structures in almost all solid materials.

Another advantage of this process, besides the flexibly usable lasers, is that thermal and mechanical damages are negligible. Thus, for example thin-film strain sensors for measuring forces and momentums can be applied directly on the component. In this way, picosecond lasers generate functional surfaces with variable geometries by laser structuring. An application field for these surfaces is gravure printing in organic electronics.

Cutting metals faster and more cost-efficient underwater

Underwater works are often time-consuming and physically very demanding for the divers. The LZH develops an automated laser-based cutting process that increases the cutting speed significantly. Currently, the main application is cutting sheet pilings. But this laser-based process is also suited for repairing offshore-facilities and ships, as well as for dismantling nuclear power plants or for underwater mining.

Additive manufacturing using Selective Laser Melting and laser deposition welding

With Selective Laser Melting (SLM) it is possible to create smallest three-dimensional structures, complex parts or individual implants virtually “out of nothing”. The LZH develops processes for the additive manufacturing of load-adapted parts and for the processing of special materials, such as magnesium.

With Selective Laser Micro Melting (SLµM) it is thus also possible to manufacture parts with resolutions up to <30 µm. When high-quality machine parts are damaged, they can in many cases be repaired by Laser Metal Deposition welding (LMD). Moreover, adding layers by LMD can protect three-dimensional surfaces from wear and corrosion.

Further education seminar „Additive Manufacturing Specialist“

The LZH Laser Akademie GmbH, one of the leading further education centers in applied laser technology, together with the Schweißtechnische Lehr- und Versuchsanstalt (SLV) Hannover is nationwide the first to offer a new certified further education seminar “Additive Manufacturing Specialist”. In this five-day course, skilled workers, master craftsmen and technicians learn how to operate systems for Selective Laser Melting.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>