Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-vibration sawing and sanding

25.03.2015

No matter whether it’s a drill or an oscillator, handheld power tools produce powerful vibrations. But a new anti-vibration system almost entirely eliminates that uncomfortable shaking sensation you get when using such tools: The FEIN MultiMaster oscillator vibrates up to 70 percent less and is only half as loud as its predecessor. Fraunhofer researchers developed the technology in collaboration with FEIN and will be presenting the system at Hannover Messe (Hall 2, Booth C22) from April 13 to 17, 2015.

If you’ve spent extended periods of time working with a drill or some other handheld power tool, you’ll know how quickly you’re longing to give your poor arms a rest. No wonder, either – such devices tend to vibrate a lot and be very loud. In the future, you’ll experience far lower vibrations when you want to drill, saw or sand something.


FEIN’s versatile power tool vibrates up to 70 percent less and is only half as loud as its predecessor.

© C. & E. Fein GmbH

Researchers from the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt teamed up with their colleagues at C. & E. Fein GmbH to develop a technology to dramatically reduce vibrations. “We examined how the system is set up and refined it so it can be applied to a range of handheld power tools,” explains Heiko Atzrodt, group manager at Fraunhofer LBF.

And this is precisely what FEIN has done to one of its oscillating power tools – in other words, a tool that doesn’t have a rotating action, but rather one that moves back and forth almost 19,500 times a minute. These and similar tools can do more than saw and sand; they are just as adept at rasping, polishing, shaving, cutting, severing, sharpening and filing – including at those hard-to-reach places.

Decoupling the housing from the motor

So how did the researchers manage to dramatically reduce how much handheld power tools vibrate? “Elastomer elements are used to decouple the housing from the motor and act like a form of mechanical suspension and insulation,” says Atzrodt. What this means is that only a tiny portion of motor vibrations are transferred to the housing and so to the user. You can, however, have too much of a good thing:

If the researchers were to insulate the housing too much, users would be unable to feel how hard they were pressing the tool onto whatever material they’re working with. So the researchers had to strike a balance between reducing vibrations and allowing users to retain a feel for what the tool is doing. This comes down to adjusting the stiffness of the elastomer elements.

First, the researchers used a simulation to determine the ideal stiffness range before integrating various suspension and insulation devices into a test system. This in turn allowed them to set the basic development parameters.

Up to 70 percent lower vibrations, 50 percent less noise

“By applying the anti-vibration system, FEIN was able to reduce vibrations by up to 70 percent compared to previous models,” says Atzrodt. “For almost all applications, the oscillator now belongs squarely in the zero vibration class.” Since this makes it permissible to work with this tool for up to eight hours at a time, technicians or autoworkers can now use it throughout their shift. The tool is also easier on the ears: Thanks to the new insulation, it now produces 50 percent less acoustic pressure.

This low-vibration oscillator is now on the market under the name FEIN MultiMaster FMM 350 Q. At Hannover Messe, the Fraunhofer LBF researchers will be offering visitors the chance to feel the difference for themselves by demonstrating the new-and-improved oscillator next to its predecessor.

Weitere Informationen:

http://www.fraunhofer.de/en/press/research-news/2015/March/low-vibration-sawing-...

Anke Zeidler-Finsel | Fraunhofer LBF

Further reports about: LBF acoustic arms colleagues difference motor vibrations oscillator stiffness vibrations

More articles from Trade Fair News:

nachricht New Process Technology Unlocks Boost in Laser Productivity
18.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED microdisplays as high-precision optical fingerprint sensors
09.05.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>