Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-vibration sawing and sanding

25.03.2015

No matter whether it’s a drill or an oscillator, handheld power tools produce powerful vibrations. But a new anti-vibration system almost entirely eliminates that uncomfortable shaking sensation you get when using such tools: The FEIN MultiMaster oscillator vibrates up to 70 percent less and is only half as loud as its predecessor. Fraunhofer researchers developed the technology in collaboration with FEIN and will be presenting the system at Hannover Messe (Hall 2, Booth C22) from April 13 to 17, 2015.

If you’ve spent extended periods of time working with a drill or some other handheld power tool, you’ll know how quickly you’re longing to give your poor arms a rest. No wonder, either – such devices tend to vibrate a lot and be very loud. In the future, you’ll experience far lower vibrations when you want to drill, saw or sand something.


FEIN’s versatile power tool vibrates up to 70 percent less and is only half as loud as its predecessor.

© C. & E. Fein GmbH

Researchers from the Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt teamed up with their colleagues at C. & E. Fein GmbH to develop a technology to dramatically reduce vibrations. “We examined how the system is set up and refined it so it can be applied to a range of handheld power tools,” explains Heiko Atzrodt, group manager at Fraunhofer LBF.

And this is precisely what FEIN has done to one of its oscillating power tools – in other words, a tool that doesn’t have a rotating action, but rather one that moves back and forth almost 19,500 times a minute. These and similar tools can do more than saw and sand; they are just as adept at rasping, polishing, shaving, cutting, severing, sharpening and filing – including at those hard-to-reach places.

Decoupling the housing from the motor

So how did the researchers manage to dramatically reduce how much handheld power tools vibrate? “Elastomer elements are used to decouple the housing from the motor and act like a form of mechanical suspension and insulation,” says Atzrodt. What this means is that only a tiny portion of motor vibrations are transferred to the housing and so to the user. You can, however, have too much of a good thing:

If the researchers were to insulate the housing too much, users would be unable to feel how hard they were pressing the tool onto whatever material they’re working with. So the researchers had to strike a balance between reducing vibrations and allowing users to retain a feel for what the tool is doing. This comes down to adjusting the stiffness of the elastomer elements.

First, the researchers used a simulation to determine the ideal stiffness range before integrating various suspension and insulation devices into a test system. This in turn allowed them to set the basic development parameters.

Up to 70 percent lower vibrations, 50 percent less noise

“By applying the anti-vibration system, FEIN was able to reduce vibrations by up to 70 percent compared to previous models,” says Atzrodt. “For almost all applications, the oscillator now belongs squarely in the zero vibration class.” Since this makes it permissible to work with this tool for up to eight hours at a time, technicians or autoworkers can now use it throughout their shift. The tool is also easier on the ears: Thanks to the new insulation, it now produces 50 percent less acoustic pressure.

This low-vibration oscillator is now on the market under the name FEIN MultiMaster FMM 350 Q. At Hannover Messe, the Fraunhofer LBF researchers will be offering visitors the chance to feel the difference for themselves by demonstrating the new-and-improved oscillator next to its predecessor.

Weitere Informationen:

http://www.fraunhofer.de/en/press/research-news/2015/March/low-vibration-sawing-...

Anke Zeidler-Finsel | Fraunhofer LBF

Further reports about: LBF acoustic arms colleagues difference motor vibrations oscillator stiffness vibrations

More articles from Trade Fair News:

nachricht COMPAMED 2017: New manufacturing processes for customized products
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization
20.11.2017 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>