Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LOPEC 2016: Laser innovations for structuring and ablating in organic electronics

10.03.2016

The Fraunhofer Institute for Laser Technology ILT will be presenting laser innovations for printed and organic electronics to an audience of industry professionals at the LOPEC 2016 trade fair in Munich on April 6-7, 2016. The presentation will show the laser structuring processes used for flexible organic electronics and OLED technology.

For several years now, the electronics and other industries have been abuzz about an entirely new spectrum of applications below the familiar field of silicon technology. The object of all this excitement is organic and printed electronics, which make it possible to produce thinner, lighter and more flexible components. Application areas for this pioneering new technology include lighting elements, TV and cell phone displays, photovoltaics and intelligent packaging such as RFID tags.


Flexible and organic: A semifinished flexible solar cell is produced on a roll-to-roll system using laser structuring, and will then be finished in a printing process.

Fraunhofer ILT, Aachen, Germany.


A legible solution: Fraunhofer ILT demonstrates how to inscribe organic LEDs at LOPEC.

Fraunhofer ILT, Aachen, Germany.

Fraunhofer ILT inscribes OLEDs

The LOPEC (Large-area, Organic & Printed Electronics Convention) trade fair in Munich is the leading exhibition for printed electronics worldwide with the most important conference, according to its organizers, and it has been presenting the latest developments in the field for seven years now.

Fraunhofer Institute for Laser Technology ILT has responded to the significance of this venue, working in cooperation with COPT NRW to exhibit its research developments, which support companies in the manufacturing of new components using organic and printed electronics. Currently, Fraunhofer ILT is developing a method for adding inscriptions to OLED components.

“We have succeeded in producing an inscription in the illumination surface by means of selective deactivation of organic material,” explains Fraunhofer ILT researcher Christian Hördemann. “We use a laser beam activated in ultrashort pulses. Together with our partner company OLEDWorks, we are working on developing a novel process to achieve long-term stable inscription and customization of OLEDs.”

An additional focus of their work entails laser microstructuring. The benefits of this process include its high resolution in the µm range, its high throughput for large surfaces, and its wide range of design possibilities.

Laser structuring for flexible solar cells

In Munich, Fraunhofer ILT will be showcasing additional applications involving laser microstructuring of extremely thin layers to demonstrate how the properties of organic components can be influenced using this technology. Picosecond lasers, for instance, can be used for roll-to-roll production of organic solar cells. Processes for the roll-to-roll production of organic solar cells are being researched in collaboration with Coatema Coating Machinery GmbH from Dormagen and Solarmer Energy, Inc. from the US. A good example of this method being used in production is the “Mini Module” flexible solar cell.

“At the moment we have achieved efficiency over 6% by using laser patterned ITO in the fabrication of our mini-sized flexible OPV modules,” explains Dr. Yanping Wang, Principal Researcher at Solarmer Energy, Inc. “Our flexible OPV enables versatile designs for applications that were not possible before, especially the low-power application in the rapidly emerging wearable electronics and Internet of Things markets.”

Our experts at LOPEC 2016

Further information and additional laser innovations for printed and organic electronics will be on hand at the joint booth of COPT NRW and Fraunhofer Institute for Laser Technology ILT at the LOPEC exhibition on April 6-7, 2016 in Munich (hall B0, booth 404).

Contact

Dipl.-Ing. Christian Hördemann
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-8013
christian.hoerdemann@ilt.fraunhofer.de

Dr.-Ing. Arnold Gillner
Leiter des Kompetenzfeldes Abtragen und Fügen
Telefon +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/UQW here you may find the press release and printable image material
http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>