Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LaserTAB: More efficient and precise contacts thanks to human-robot collaboration


At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed itself. In focus is a new light-weight robot (LBR is German for lightweight robot) developed by Kuka Roboter GmbH from Augsburg. According to company statements, not only is the LBR iiwa, or “intelligent industrial work assistant (iiwa)”, the first sensitive robot to be manufactured in series, but it also helps man and robot work closely together.

The lightweight construction robot “intelligent industrial work assistant” guarantees that man and machine cooperate smoothly.

© KUKA AG, Augsburg, Germany.

Battery modules from 18650-battery cells contacted by laser-beam microwelding. This module was developed in collaboration with the Fraunhofer LBF LBF in Darmstadt as part of the project evTrailer.

© Fraunhofer ILT, Aachen, Germany.

Spacer provides optical distance

The Aachen researchers have mounted a relay-optic and a spacer on the collaborating robot (Cobot), the latter of which ensures that the optics complies with the distance (focal length) required for the process. The LBR iiwa “feels” when the spacer touches the weld and starts the welding process. Thus, the welding points are always held at a constant distance from the lens thanks to the spacer and the sensing robot.

In Munich, Fraunhofer ILT will be using concrete applications to demonstrate how the microjoining process in battery technology can be made more precise and reliable with the help of this lightweight robot. In detail, it is addressing how to better weld prismatic, round and pouch cells.

In a demonstration, the institute combines the two processes of microjoining and 3D printing, in which this welding process plays a leading technical role. The Aachen-based scientists will be presenting a technology demonstrator on how a copper contact element can be connected to a round cell via LaserTAB.

The Fraunhofer ILT has also developed a specially shaped copper connector, which it manufactures on its own with Selective Laser Melting (SLM), also known as Laser Beam Melting or Laser Powder-Bed Fusion (L-PBF).

No more complicated positioning necessary

All possible applications point to the advantages of the new robot-assisted process, in which the user guides the robot directly to the point of use. It saves the previous, elaborate search of the focus position and the cumbersome positioning of the laser. In addition, the spacer ensures that the focus position does not change during joining and that the connector is pressed against the workpiece or the battery.

Elaborate clamping devices are, therefore, superfluous or can be less complex. In particular, users will appreciate how the system mechanically maintains the distance of the optics to the welding site, especially when they have to balance production tolerances or different heights. In these challenging situations with their mostly very complex geometries, the robot-assisted LaserTAB works much more precisely than conventional methods.

Fraunhofer ILT at the productronica

More information on LaserTAB will be available at the joint Fraunhofer stand B2.317 at productronica, the world's leading trade fair for electronics development and production, from November 14 to 17, 2017 in Munich.


Johanna Helm M. Sc.
Micro Joining Group
Telephone +49 241 8906-8382

Dr.-Ing. Alexander Olowinsky
Group Manager Micro Joining
Telefon +49 241 8906-491

Weitere Informationen:

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Photovoltaics: easy implementation thanks to modern printing techniques
14.03.2018 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht ILA 2018: Laser alternative to hexavalent chromium coating
13.03.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>