Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

InnoTrans 2016: Fraunhofer IPM presents novel contact wire inspection system

04.08.2016

Fraunhofer IPM is presenting its new Contact Wire Inspection System (CIS) at the InnoTrans 2016 trade fair. The CIS records the vertical and horizontal position of up to ten contact wires at the same time while also measuring their degree of wear – contactlessly and at speeds as high as 350 km/h.

The Fraunhofer Institute for Physical Measurement Techniques IPM is showcasing a number of its laser- and camera-based railway measurement systems, including numerous advancements and additional features, at InnoTrans 2016. Taking center stage is the new Contact Wire Inspection System (CIS), which is the only one of its kind in the world and boasts an impressive ability to capture a comprehensive range of data. In one single measurement process, it determines both the position and degree of wear of as many as ten contact wires simultaneously, working contactlessly at speeds of up to 350 km/h. Fraunhofer IPM is also presenting its Clearance Profile Scanner (CPS) for measuring clearance profiles as well as a small and lightweight laser-based measurement system for use on unmanned aerial vehicles (UAV). All the measuring devices combine high-resolution laser scanners with rapid image processing.


The Contact Wire Inspection System CIS combines a camera system for recording the degree of contact wire wear (illustrated) and a laser scanner for recording the contact wire position.

Rapid detection of contact wire position and wear

The Contact Wire Inspection System (CIS) is mounted on the roof of an inspection car. It comprises Fraunhofer’s Wire Wear Monitoring System (WWS), Contact Wire Recording System (CRS), and, optionally, its Laser Pole Detection System (LPS). The CIS uses a laser scanner (CRS) to determine the position of the wires and a camera (WWS) to identify the level of wire wear. A processing unit inside the inspection train provides the operators on site with processed position data that has already compensated for the train’s roll, which is recorded separately. Additional features, such as the automatic cleaning of the measurement window, ensure that the apparatus operates reliably and requires little maintenance.

The residual thickness of contact wires with a round cross section is calculated from the width of their sliding surface. The CIS’s camera-based measuring unit records the sliding surface and uses this information to derive data about the degree of wear on the wires. At a speed of 100 km/h, a reading is taken every 13 mm. Due to its high measurement frequency and rapid data processing, the system is suitable for use at speeds of up to 350 km/h. The CIS features its own lighting unit, meaning it can be operated reliably at any time, including at night, in tunnels or under bridges.

Fraunhofer IPM has also significantly upgraded the laser-based measuring unit used to record contact wire position. Higher scan frequencies have improved the system’s precision, meaning that the measurement results are virtually no longer influenced by the speed of the train. In addition, the measurement range has been extended to 10 meters, while the sampling rate, in other words, the number of measuring points per scan, has been increased sixfold.

You can visit Fraunhofer IPM at InnoTrans 2016 in Berlin from September 20–23. Find us at the joint stand of the Fraunhofer Traffic and Transportation Alliance in Hall 23, Stand 206.

Weitere Informationen:

http://www.ipm.fraunhofer.de/railway

Holger Kock | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>