Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Industrial laser processing of fiber reinforced plastics at JEC 2016


Today, composite materials such as CFRP and GFRP are taking the world of industrial series production by storm. The material is considered difficult to work with, but modern lasers make it possible to achieve short cycle times with consistent quality. The Fraunhofer Institute for Laser Technology ILT has developed an entire range of laser-based technologies for processing composite materials, which will be on display from March 8-10 at JEC World 2016 in Paris (hall 5A booth E70).

Composite materials are known not only in the automotive and aviation sectors for their high strength and light weight. A number of other industries are also beginning to use these new materials, and demand for materials along with processing methods is growing accordingly.

Picture 1: Clean cutting edges in 8 mm thick CFRP pieces are feasible thanks to a high-tech laser process.

© Fraunhofer ILT, Aachen.

Picture 2: A car door with a FRP reinforcing brace will be on display to demonstrate laser-assisted joining of plastic-metal hybrid compounds.

© Fraunhofer ILT, Aachen.

The JEC World trade fair for composite materials in Paris is also expanding in line with this demand, having recently relocated to a new, more spacious exhibition site. More than 1300 exhibitors and over 35,000 visitors are expected there this year.

The Fraunhofer ILT will once again be on hand at the joint Fraunhofer booth in Hall 5A. For years, Fraunhofer ILT has been designing methods for processing composite materials using lasers.

These include cutting, ablating, drilling and welding, in addition to the joining of plastic-metal hybrid compounds. There will be a team on site in Paris using several demonstration objects to explain how laser processing can achieve both greater cost-effectiveness and higher quality.

Cutting CFRP components of up to 10 mm in thickness

Carbon fiber reinforced plastic is difficult to process because it is composed of two vastly different components: high-strength, temperature-resistant carbon fibers, and a soft plastic matrix. The thicker the material is, the harder it is to achieve an undamaged cutting edge.

A laser beam is the ideal wear-free tool in such scenarios. The laser passes multiple times over the cutting contour at high speeds, which minimizes material damage. This specialized technology was developed as part of the EU-funded HyBriLight project for industries which include the aviation sector.

Adhesive-free joining of plastic and metal parts by form closure

Particularly in the automotive industry, there is a persistent problem arising from the need to reliably and permanently bond dissimilar materials such as plastics and metals. Here, too, the experts at Fraunhofer ILT in Aachen have come up with a solution that is suitable for industrial applications.

In a two-step process, the metal surface is first structured with the laser. Afterwards, the plastic is heated with the laser or an induction heating device and then bonded with the metal part.

Unlike adhesive bonding, the process does without additives or additional intervals for hardening or surface cleaning. When preparing the metal side, the microstructure can even be adapted to the workpiece’s subsequent force flows, meaning the metal components can be made as thin and lightweight as possible.

The technology was developed within the EU’s PMJoin project, together with partners from the automotive industry; a demonstrator in the form of a car door with a GFRP reinforcing brace will be on display. Partners in the FlexHyJoin follow-up project are currently working on a fully automated version of the process.

Metallic inserts in textile preforms

Screws and rivet fittings represent the traditional force transmission elements for metallic components. However, integration of such functional elements becomes far more complicated in case of fiber-reinforced plastics. In particular, the placement of drill holes to create form-locked or friction-locked connections demand for an elevated level of expertise.

As part of the LaserInsert project, funded by the German Federal Ministry of Economic Affairs (BMWi), the Fraunhofer ILT team is currently working on a mass production-ready, laser-based process to address this issue. First, an ultrafast laser is utilized in order to ablate holes in the textile preform before it is being impregnated with resin. Afterwards, a metal insert is placed and subsequently the resin matrix is applied. The final result is a consolidated work piece featuring a metallic-FRP hybrid structure.

In addition to optimizing processes, the project partners are also working to enhance the textile structures, which, in combination with laser processing, offer improved locking and friction joining properties with the insert fasteners. They are targeting automotive and aviation industries as users of this technique.


Dipl.-Wirt.Ing Christoph Engelmann
Micro Joining Group
Telephone +49 241 8906-217

Dr.-Ing. Frank Schneider
Laser Cutting Group
Telephone +49 241 8906-426

Dipl.-Ing. Stefan Janssen M.Sc.
Laser Cutting Group
Chair for Laser Technology LLT
RWTH Aachen
Telephone +49 241 8906-8076

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52047Aachen, Germany

Weitere Informationen:

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT JEC Laser Lasertechnik automotive industry composite materials fiber plastic processing textile

More articles from Trade Fair News:

nachricht Modular safety concept increases flexibility in plant conversion
22.03.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions
21.03.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>