Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial laser processing of fiber reinforced plastics at JEC 2016

12.02.2016

Today, composite materials such as CFRP and GFRP are taking the world of industrial series production by storm. The material is considered difficult to work with, but modern lasers make it possible to achieve short cycle times with consistent quality. The Fraunhofer Institute for Laser Technology ILT has developed an entire range of laser-based technologies for processing composite materials, which will be on display from March 8-10 at JEC World 2016 in Paris (hall 5A booth E70).

Composite materials are known not only in the automotive and aviation sectors for their high strength and light weight. A number of other industries are also beginning to use these new materials, and demand for materials along with processing methods is growing accordingly.


Picture 1: Clean cutting edges in 8 mm thick CFRP pieces are feasible thanks to a high-tech laser process.

© Fraunhofer ILT, Aachen.


Picture 2: A car door with a FRP reinforcing brace will be on display to demonstrate laser-assisted joining of plastic-metal hybrid compounds.

© Fraunhofer ILT, Aachen.

The JEC World trade fair for composite materials in Paris is also expanding in line with this demand, having recently relocated to a new, more spacious exhibition site. More than 1300 exhibitors and over 35,000 visitors are expected there this year.

The Fraunhofer ILT will once again be on hand at the joint Fraunhofer booth in Hall 5A. For years, Fraunhofer ILT has been designing methods for processing composite materials using lasers.

These include cutting, ablating, drilling and welding, in addition to the joining of plastic-metal hybrid compounds. There will be a team on site in Paris using several demonstration objects to explain how laser processing can achieve both greater cost-effectiveness and higher quality.

Cutting CFRP components of up to 10 mm in thickness

Carbon fiber reinforced plastic is difficult to process because it is composed of two vastly different components: high-strength, temperature-resistant carbon fibers, and a soft plastic matrix. The thicker the material is, the harder it is to achieve an undamaged cutting edge.

A laser beam is the ideal wear-free tool in such scenarios. The laser passes multiple times over the cutting contour at high speeds, which minimizes material damage. This specialized technology was developed as part of the EU-funded HyBriLight project for industries which include the aviation sector.

Adhesive-free joining of plastic and metal parts by form closure

Particularly in the automotive industry, there is a persistent problem arising from the need to reliably and permanently bond dissimilar materials such as plastics and metals. Here, too, the experts at Fraunhofer ILT in Aachen have come up with a solution that is suitable for industrial applications.

In a two-step process, the metal surface is first structured with the laser. Afterwards, the plastic is heated with the laser or an induction heating device and then bonded with the metal part.

Unlike adhesive bonding, the process does without additives or additional intervals for hardening or surface cleaning. When preparing the metal side, the microstructure can even be adapted to the workpiece’s subsequent force flows, meaning the metal components can be made as thin and lightweight as possible.

The technology was developed within the EU’s PMJoin project, together with partners from the automotive industry; a demonstrator in the form of a car door with a GFRP reinforcing brace will be on display. Partners in the FlexHyJoin follow-up project are currently working on a fully automated version of the process.

Metallic inserts in textile preforms

Screws and rivet fittings represent the traditional force transmission elements for metallic components. However, integration of such functional elements becomes far more complicated in case of fiber-reinforced plastics. In particular, the placement of drill holes to create form-locked or friction-locked connections demand for an elevated level of expertise.

As part of the LaserInsert project, funded by the German Federal Ministry of Economic Affairs (BMWi), the Fraunhofer ILT team is currently working on a mass production-ready, laser-based process to address this issue. First, an ultrafast laser is utilized in order to ablate holes in the textile preform before it is being impregnated with resin. Afterwards, a metal insert is placed and subsequently the resin matrix is applied. The final result is a consolidated work piece featuring a metallic-FRP hybrid structure.

In addition to optimizing processes, the project partners are also working to enhance the textile structures, which, in combination with laser processing, offer improved locking and friction joining properties with the insert fasteners. They are targeting automotive and aviation industries as users of this technique.

Contact

Dipl.-Wirt.Ing Christoph Engelmann
Micro Joining Group
Telephone +49 241 8906-217
christoph.engelmann@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Laser Cutting Group
Telephone +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Dipl.-Ing. Stefan Janssen M.Sc.
Laser Cutting Group
Chair for Laser Technology LLT
RWTH Aachen
Telephone +49 241 8906-8076
stefan.janssen@llt.rwth-aachen.de
www.rwth-aachen.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52047Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT JEC Laser Lasertechnik automotive industry composite materials fiber plastic processing textile

More articles from Trade Fair News:

nachricht Fraunhofer HHI with latest VR technologies at NAB in Las Vegas
24.04.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Kiel nano research at the Hannover Messe
21.04.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>