Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heraeus presents new technologies for foldable touch panels at Touch Taiwan Exhibition


Touch Taiwan 2016: Heraeus launches new dry-film resist photolithography fine patterning process technology for conductive polymer films and demonstrates rapid IR curing solutions for flexible touch displays

At this year Touch Taiwan from August 24-26 Heraeus launches a new touch panel process to pattern Clevios conductive polymer films by DFR (dry-film resist) photolithography. The development was done together with Taiwan’s Industrial Technology Research Institute (ITRI).

New dry-film resist photolithography fine patterning process technology for conductive polymer films and rapid IR curing solutions for flexible touch displays.

Copyright Heraeus 2016

Heraeus will show fully functional 7 inch GFF-type touch panel demonstrators at its booth at Touch Taiwan 2016 made by the new DFR photolithography process. High resolution patterning of touch sensors is a prerequisite for advanced touch panels, especially for flexible and foldable touch displays.

“The high resolution patterning process for Clevios film is an important milestone. Our customers are implementing it rapidly. Their feedback is excellent”, says Bernd Stenger, Head of Business Line Electronic Chemicals.

With this Heraeus Innovation line widths of 50 um resolution and even lower can be achieved easily. Parameter sets and process windows for the entire process chain of Clevios touch panel manufacturing are now available for customers to implement in their productions. Clevios films and sensors do easily withstand more than 300.000 bendings at bending radii as low as 1 mm without degradation.

Top innovation: Rapid Infrared (IR) curing contributes to excellent substrates

A second innovation at Heraeus’ booth is a flexible 7 inch Clevios conductive polymer touch panel based on an ultrathin flexible polyimide substrate. Polyimide curing is the domain for Heraeus Noblelight where its customized rapid IR curing technologies come into play for the fastest and most efficient curing of ultrathin polyimide substrate films that are key materials for the next generation flexible display and touch panel substrates.

Infrared emitters transfer heat contact free and at high efficiency. Compared to conventional hot air ovens curing processes can be done in few minutes rather than in hours. Additionally, without air movement any contamination is minimized. Infrared emitters that match exactly to the absorption wavelength of the material can heat up much faster. Medium wave Carbon emitters meets the absorption spectrum of Polyimide and enable rapid IR curing and drying.

Heraeus, the technology group headquartered in Hanau, Germany, is a leading international family-owned company formed in 1851. With expertise, a focus on innovations, operational excellence and an entrepreneurial leadership, we strive to continuously improve our business performance.
We create high-quality solutions for our clients and strengthen their competitiveness in the long term by combining material expertise with technological know-how. Our ideas are focused on themes such as the environment, energy, health, mobility and industrial applications. Our portfolio ranges from components to coordinated material systems which are used in a wide variety of industries, including the steel, electronics, chemical, automotive and telecommunications industries.

In the 2015 financial year, Heraeus generated revenues without precious metals of €1.9 bn and a total revenue including precious metal of €12.9 bn . With approximately 12,500 employees worldwide in more than 100 subsidiaries in 38 countries, Heraeus holds a leading position in its global markets.

For further information, please contact:


Heraeus Noblelight GmbH

Tel +49 6181/35-8545


Heraeus New Businesses

Tel +49 214/30-21201



Dr. Marie-Luise Bopp

Tel +49 6181/35-8547


Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>