Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hanover Fair 2018: Custom plastics extend the lifespan of components

10.04.2018

From water bottles and lunchboxes to children’s toys – countless products are made from plastic. Not only is it used for everyday items, the material is also found in components for production plants and medical technology. At the Technische Universität Kaiserslautern (TUK), researchers are working on combining plastic with properties that protect it against wear and thereby extend its lifespan. To this end, the researchers are using a testing instrument to examine the material under various conditions. They will attend the Hanover Fair from 23 to 27 April to present their plastics and testing system at the research stand of the State of Rhineland-Palatinate (Hall 2, Stand B40).

Plastics are often used in industrial applications, such as for all sorts of components in production machinery or vehicles. “It is often better than metal in these cases,” explains PhD student Nicholas Ecke, who is researching the properties of the material at the Chair of Composite Engineering under Prof Dr Alois Schlarb. “We are investigating the effect of friction, wear and lubrication, and exploring how to extend the material’s lifespan.” Experts refer to this field as tribology – the science of friction, wear and lubrication.


The researchers Nicholas Ecke (left) and his colleague Dong Hoa Vu are analysing the properties of the plastics produced in their own laboratories.

Credit: TUK/Thomas Koziel

The engineers at Kaiserslautern are producing their own plastics and working on making them more resistant to friction and wear. “They consist of polymers which we augment with certain filler materials,” Ecke adds. What is special about this research is that the researchers are able to change the properties of the plastic and tailor it for the given application.

“For instance, carbon fibres help to strengthen the material and reduce abrasion,” the engineer continues. However, other materials can also be used; for example, tiny ceramic particles have a positive effect on the friction characteristics and also decrease wear. The researchers are also working on reactive plastics.

“Here, we incorporate various materials that are released, for example, when the temperature increases,” Ecke explains. “This includes water vapour that acts like an air cushion and reduces friction.” Moreover, the researchers are able to combine various filler material of different sizes.

The researchers assisting Ecke and his colleague, laboratory engineer Dong Hoa Vu, are analysing the properties of the plastics produced in their own laboratories. One of their testing machines is the pin-on-disc tribometer. A small right-angled pin is loaded into a holder, above which a metal disk is placed which lies directly against the pin. In this test rig, the disk can spin for several hours.

“We set the speed using a motor and the contact pressure of the disk using air pressure; the temperature can also be regulated,” Ecke elucidates. The device is equipped with sensors that measure the contact and friction pressure, while an infra-red sensor records the temperature. Using an optical distance meter, the researchers are able to measure the friction on the plastic sample directly.

“This technique allows us to recreate various conditions that components are exposed to in operation,” the engineer states. “The measurements help us to see how the plastic behaves.”

The researchers at the Chair of Composite Engineering on the Kaiserslautern campus are focused on analysing the fundamental properties of their materials, but they are also cooperating with industry partners to test how certain plastics behave in certain situations. They will be presenting their testing machines and plastics at the Hanover Fair.

For enquires:
Nicholas Ecke
Professorship for Composite Materials
Tel.: 0631 205-5753
Email: nicholas.ecke[at]mv.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern

Further reports about: Composite Engineering air cushion materials plastic

More articles from Trade Fair News:

nachricht BAM@Hannover Messe: innovative 3D printing method for space flight
24.04.2018 | Bundesanstalt für Materialforschung und -prüfung (BAM)

nachricht Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>